Драйвер для светодиодов своими руками с питанием от 220 В: как сделать, схема простого самодельного стабилизатора напряжения для работы лед светильника от сети

Обновлено: 17.05.2024

Неотъемлемой частью любой качественной лампы или светильника на светодиодах является драйвер. Применительно к освещению, под понятием «драйвер» следует понимать электронную схему, которая преобразует входное напряжение в стабилизированный ток заданной величины. Функциональность драйвера определяется шириной диапазона входных напряжений, возможностью регулировки выходных параметров, восприимчивостью к перепадам в питающей сети и эффективностью.

От перечисленных функций зависят качественные показатели светильника или лампы в целом, срок службы и стоимость. Все источники питания (ИП) для светодиодов условно разделяют на преобразователи линейного и импульсного типа. Линейные ИП могут иметь узел стабилизации по току или напряжению. Часто схемы такого типа радиолюбители конструируют своими руками на микросхеме LM317. Такое устройство легко собирается и имеет малую себестоимость. Но, ввиду очень низкого КПД и явного ограничения по мощности подключаемых светодиодов, перспективы развития линейных преобразователей ограничены.

Импульсные драйверы могут иметь КПД более 90% и высокую степень защиты от сетевых помех. Их мощность потребления в десятки раз меньше мощности, отдаваемой в нагрузку. Благодаря этому они могут изготавливаться в герметичном корпусе и не боятся перегрева.

Первые импульсные стабилизаторы имели сложное устройство без защиты от холостого хода. Затем они модернизировались и, в связи с бурным развитием светодиодных технологий, появились специализированные микросхемы с частотной и широтно-импульсной модуляцией.

Схема питания светодиодов на основе конденсаторного делителя

схема светодиодной лампы из Китая

К сожалению, в конструкции дешёвых светодиодных ламп на 220В из Китая не предусмотрен ни линейный, ни импульсный стабилизатор. Мотивируясь исключительно низкой ценой готового изделия, китайская промышленность смогла максимально упростить схему питания. Называть её драйвером не корректно, так как здесь отсутствует какая-либо стабилизация. Из рисунка видно, что электрическая схема лампы рассчитана на работу от сети 220В. Переменное напряжение понижается RC-цепочкой и поступает на диодный мост. Затем выпрямленное напряжение частично сглаживается конденсатором и через токоограничивающий резистор поступает на светодиоды. Данная схема не имеет гальванической развязки, то есть все элементы постоянно находятся под высоким потенциалом.

В результате частые просадки сетевого напряжения приводит к мерцанию светодиодной лампы. И наоборот, завышенное напряжение сети вызывает необратимый процесс старения конденсатора с потерей ёмкости, а, иногда, становится причиной его разрыва. Стоит отметить, что еще одной, серьезной отрицательной стороной данной схемы является ускоренный процесс деградации светодиодов вследствие нестабильного тока питания.

Схема драйвера на CPC9909


Современные импульсные драйверы для светодиодных ламп имеют несложную схему, поэтому ее можно легко смастерить даже своими руками. Сегодня, для построения драйверов, производится ряд интегральных микросхем, специально предназначенных для управления мощными светодиодами. Чтобы упростить задачу любителям электронных схем, разработчики интегральных драйверов для светодиодов в документации приводят типичные схемы включения и расчеты компонентов обвязки.

Общие сведения

Американская компания Ixys наладила выпуск микросхемы CPC9909, предназначенной для управления светодиодными сборками и светодиодами высокой яркости. Драйвер на основе CPC9909 имеет небольшие габариты и не требует больших денежных вложений. ИМС CPC9909 изготавливается в планарном исполнении с 8 выводами (SOIC-8) и имеет встроенный стабилизатор напряжения.

Благодаря наличию стабилизатора рабочий диапазон входного напряжения составляет 12-550В от источника постоянного тока. Минимальное падение напряжения на светодиодах - 10% от напряжения питания. Поэтому CPC9909 идеальна для подключения высоковольтных светодиодов. ИМС прекрасно работает в температурном диапазоне от -55 до +85°C, а значит, пригодна для конструирования светодиодных ламп и светильников для наружного освещения.

Стоит отметить, что с помощью CPC9909 можно не только включать и выключать мощный светодиод, но и управлять его свечением. Чтобы узнать обо всех возможностях ИМС, рассмотрим назначение ее выводов.

  1. VIN. Предназначен для подачи напряжения питания.
  2. CS. Предназначен для подключения внешнего датчика тока (резистора), с помощью которого задаётся максимальный ток светодиода.
  3. GND. Общий вывод драйвера.
  4. GATE. Выход микросхемы. Подает на затвор силового транзистора модулированный сигнал.
  5. PWMD. Низкочастотный диммирующий вход.
  6. VDD. Выход для регулирования напряжения питания. В большинстве случаев подключается через конденсатор к общему проводу.
  7. LD. Предназначен для задания аналогового диммирования.
  8. RT. Предназначен для подключения время задающего резистора.

Схема и ее принцип работы

Типичное включение CPC9909 с питанием от сети 220В показано на рисунке. Схема способна управлять одним или несколькими мощными светодиодами или светодиодами типа High Brightness. Схему можно легко собрать своими руками даже в домашних условиях. Готовый драйвер не нуждается в наладке с учетом грамотного выбора внешних элементов и соблюдением правил их монтажа. Драйвер для светодиодной лампы на 220В на базе CPC9909 работает по методу частотно-импульсной модуляции. Это означает, что время паузы является постоянной величиной (time-off=const). Переменное напряжение выпрямляется диодным мостом и сглаживается емкостным фильтром C1, C2. Затем оно поступает на вход VIN микросхемы и запускает процесс формирования импульсов тока на выходе GATE. Выходной ток микросхемы управляет силовым транзистором Q1. В момент открытого состояния транзистора (время импульса «time-on») ток нагрузки протекает по цепи: «+диодного моста» - LED - L - Q1 - RS - «-диодного моста». За это время катушка индуктивности накапливает энергию, чтобы отдать её в нагрузку во время паузы. Когда транзистор закрывается, энергия дросселя обеспечивает ток нагрузки в цепи: L - D1 - LED - L. Процесс носит циклический характер, в результате чего ток через светодиод имеет пилообразную форму. Наибольшее и наименьшее значение пилы зависит от индуктивности дросселя и рабочей частоты. Частота импульсов определяется величиной сопротивления RT. Амплитуда импульсов зависит от сопротивления резистора RS. Стабилизация тока светодиода происходит путем сравнения внутреннего опорного напряжения ИМС с падением напряжения на RS. Предохранитель и терморезистор защищают схему от возможных аварийных режимов.

Расчет внешних элементов

Частотозадающий резистор

Длительность паузы выставляют внешним резистором RT и определяют по упрощенной формуле:

В свою очередь время паузы связано с коэффициентом заполнения и частотой:

tпаузы=(1-D)/f (с), где D - коэффициент заполнения, который представляет собой отношение времени импульса к периоду.

Рекомендованный производителем диапазон рабочих частот составляет 30-120 кГц. Таким образом, сопротивление RT можно найти так: RT=(tпаузы-0,8)*66000, где значение tпаузы подставляют в микросекундах.

Датчик тока

Номинал сопротивления RS задает амплитудное значение тока через светодиод и рассчитывается по формуле: RS=UCS/(ILED+0.5*IL пульс), где UCS - калиброванное опорное напряжение, равное 0,25В;

ILED - ток через светодиод;

IL пульс - величина пульсаций тока нагрузки, которая не должна превышать 30%, то есть 0,3*ILED.

После преобразования формула примет вид: RS=0,25/1.15*ILED (Ом).

Мощность, рассеиваемая датчиком тока, определяется формулой: PS=RS*ILED*D (Вт).

К монтажу принимают резистор с запасом по мощности 1,5-2 раза.

Дроссель

Как известно, ток дросселя не может измениться скачком, нарастая за время импульса и убывая во время паузы. Задача радиолюбителя в том, чтобы подобрать катушку с индуктивностью, обеспечивающей компромисс между качеством выходного сигнала и её габаритами. Для этого вспомним об уровне пульсаций, который не должен превышать 30%. Тогда потребуется индуктивность номиналом:

L=(USLED*tпаузы)/ IL пульс, где ULED - падение напряжения на светодиоде (-ах), взятое из графика ВАХ.

Фильтр питания

В цепи питания установлены два конденсатора: С1 - для сглаживания выпрямленного напряжения и С2 - для компенсации частотных помех. Так как CPC9909 работает в широком диапазоне входного напряжения, то в большой ёмкости электролитического С1 нет нужды. Достаточно будет 22 мкФ, но можно и больше. Емкость металлопленочного С2 для схемы такого типа стандартная - 0,1 мкФ. Оба конденсатора должны выдерживать напряжение не менее 400В.

Однако, производитель микросхемы настаивает на монтаже конденсаторов С1 и С2 с малым эквивалентным последовательным сопротивлением (ESR), чтобы избежать негативного влияния высокочастотных помех, возникающих при переключении драйвера.

Выпрямитель

Диодный мост выбирают, исходя из максимального прямого тока и обратного напряжения. Для эксплуатации в сети 220В его обратное напряжение должно быть не менее 600В. Расчетная величина прямого тока напрямую зависит от тока нагрузки и определяется как: IAC=(π*ILED)/2√2, А.

Полученное значение необходимо умножить на два для повышения надежности схемы.

Выбор остальных элементов схемы

Конденсатор C3, установленный в цепи питания микросхемы должен быть ёмкостью 0,1 мкФ с низким значением ESR, аналогично C1 и C2. Незадействованные выводы PWMD и LD также через C3 соединяются с общим проводом.

Транзистор Q1 и диод D1 работают в импульсном режиме. Поэтому выбор следует делать с учетом их частотных свойств. Только элементы с малым временем восстановления смогут сдержать негативное влияние переходных процессов в момент переключения на частоте около 100 кГц. Максимальный ток через Q1 и D1 равен амплитудному значению тока светодиода с учетом выбранного коэффициента заполнения: IQ1=ID1= D*ILED, А.

Напряжение, прикладываемое к Q1 и D1, носит импульсный характер, но не более, чем выпрямленное напряжение с учетом емкостного фильтра, то есть 280В. Выбор силовых элементов Q1 и D1 следует производить с запасом, умножая расчетные данные на два.

Предохранитель (fuse) защищает схему от аварийного короткого замыкания и должен длительно выдерживать максимальный ток нагрузки, в том числе импульсные помехи.

Установка терморезистора RTH нужна для ограничения пускового тока драйвера, когда фильтрующий конденсатор разряжен. Своим сопротивлением RTH должен защитить диоды мостового выпрямителя от пробоя в начальные секунды работы.

Другие варианты включения CPC9909

Плавный пуск и аналоговое диммирование

При желании CPC9909 может обеспечить мягкое включение светодиода, когда его яркость будет постепенно нарастать. Плавный пуск реализуется при помощи двух постоянных резисторов, подключенных к выводу LD, как показано на рисунке. Данное решение позволяет продлить срок службы светодиода.

Также вывод LD позволяет реализовывать функцию аналогового диммирования. Для этого резистор 2,2 кОм заменяют переменным резистором 5,1 кОм, тем самым плавно изменяя потенциал на выводе LD.

Импульсное димирование

Управлять свечением светодиода можно путем подачи импульсов прямоугольной формы на вывод PWMD (pulse width modulation dimming). Для этого задействуют микроконтроллер или генератор импульсов с обязательным разделением через оптопару.

Кроме рассмотренного варианта драйвера для светодиодных ламп, существуют аналогичные схемные решения от других производителей: HV9910, HV9961, PT4115, NE555, RCD-24 и пр. Каждая из них имеет свои сильные и слабые места, но в целом, они успешно справляются с возложенной нагрузкой при сборке своими руками.

Преимущества светодиодных лап рассматривались неоднократно. Обилие положительных отзывов пользователей светодиодного освещения волей-неволей заставляет задуматься о собственных лампочках Ильича. Все было бы неплохо, но когда дело доходит до калькуляции переоснащения квартиры на светодиодное освещения, цифры немного «напрягают».

Для замены обыкновенной лампы на 75Вт идёт светодиодная лампочка на 15Вт, а таких ламп надо поменять десяток. При средней стоимости около 10 долларов за лампу бюджет выходит приличный, да и еще нельзя исключить риск приобретения китайского «клона» с жизненным циклом 2-3 года. В свете этого многие рассматривают возможность самостоятельного изготовления этих девайсов.

Теория питания светодиодных ламп от 220В

Самый бюджетный вариант можно собирать своими руками из вот таких светодиодов. Десяток таких малюток стоит меньше доллара, а по яркости соответствует лампе накаливания на 75Вт. Собрать всё воедино не проблема, вот только напрямую в сеть их не подключишь - сгорят. Сердцем любой светодиодной лампы является драйвер питания. От него зависит, насколько долго и хорошо будет светить лампочка.

Что бы собрать светодиодную лампу своими руками на 220 вольт, разберёмся в схеме драйвера питания.

Параметры сети значительно превышают потребности светодиода. Что бы светодиод смог работать от сети требуется уменьшить амплитуду напряжения, силу тока и преобразовать переменное напряжение сети в постоянное.

Для этих целей используют делитель напряжения с резисторной либо ёмкостной нагрузкой и стабилизаторы.

Компоненты диодного светильника

Схема светодиодной лампы на 220 вольт потребует минимальное количество доступных компонентов.

  • Светодиоды 3,3В 1Вт - 12 шт.;
  • керамический конденсатор 0,27мкФ 400-500В - 1 шт.;
  • резистор 500кОм — 1Мом 0,5 — 1Вт - 1 ш.т;
  • диод на 100В - 4 шт.;
  • электролитические конденсаторы на 330мкФ и 100мкФ 16В по 1 шт.;
  • стабилизатор напряжения на 12В L7812 или аналогичный - 1шт.

Изготовление драйвера светодиодов на 220В своими руками

Схема лед драйвера на 220 вольт представляет собой не что иное, как импульсный блок питания.

В качестве самодельного светодиодного драйвера от сети 220В рассмотрим простейший импульсный блок питания без гальванической развязки. Основное преимущество таких схем - простота и надёжность. Но будьте осторожны при сборке, поскольку у такой схемы нет ограничения по отдаваемому току. Светодиоды будут отбирать свои положенные полтора ампера, но если вы коснётесь оголённых проводов рукой, ток достигнет десятка ампер, а такой удар тока очень ощутимый.

Схема простейшего драйвера для светодиодов на 220В состоит их трёх основных каскадов:

  • Делитель напряжения на ёмкостном сопротивлении;
  • диодный мост;
  • каскад стабилизации напряжения.

Первый каскад - ёмкостное сопротивление на конденсаторе С1 с резистором. Резистор необходим для саморазрядки конденсатора и на работу самой схемы не влияет. Его номинал не особо критичен и может быть от 100кОм до 1Мом с мощностью 0,5-1 Вт. Конденсатор обязательно не электролитический на 400-500В (эффективное амплитудное напряжение сети).

При прохождении полуволны напряжения через конденсатор, он пропускает ток, пока не произойдет заряд обкладок. Чем меньше его ёмкость, тем быстрее происходит полная зарядка. При ёмкости 0,3-0,4мкФ время зарядки составляет 1/10 периода полуволны сетевого напряжения. Говоря простым языком, через конденсатор пройдет лишь десятая часть поступающего напряжения.

Второй каскад - диодный мост. Он преобразует переменное напряжение в постоянное. После отсечения большей части полуволны напряжения конденсатором, на выходе диодного моста получаем около 20-24В постоянного тока.

Третий каскад - сглаживающий стабилизирующий фильтр.

Конденсатор с диодным мостом выполняют функцию делителя напряжения. При изменении вольтажа в сети, на выходе диодного моста амплитуда так же будет меняться.


Что бы сгладить пульсацию напряжения параллельно цепи подключаем электролитический конденсатор. Его ёмкость зависит от мощности нашей нагрузки.

В схеме драйвера питающее напряжение для светодиодов не должно превышать 12В. В качестве стабилизатора можно использовать распространённый элемент L7812.

Собранная схема светодиодной лампы на 220 вольт начинает работать сразу, но перед включением в сеть тщательно изолируйте все оголённые провода и места пайки элементов схемы.

Вариант драйвера без стабилизатора тока

В сети существует огромное количество схем драйверов для светодиодов от сети 220В, которые не имеют стабилизаторов тока.

Схема светодиодного драйвера без стабилизатора

Проблема любого безтрансформаторного драйвера - пульсация выходного напряжения, следовательно, и яркости светодиодов. Конденсатор, установленный после диодного моста, частично справляется с этой проблемой, но решает её не полностью.

На диодах будет присутствовать пульсация с амплитудой 2-3В. Когда мы устанавливаем в схему стабилизатор на 12В, даже с учётом пульсации амплитуда входящего напряжения будет выше диапазона отсечения.

Диаграмма напряжения в схеме без стабилизатора

Диаграмма в схеме со стабилизатором

Диаграмма при подключении через стабилизатор тока

Поэтому драйвер для диодных ламп, даже собранный своими руками, по уровню пульсации не будет уступать аналогичным узлам дорогих ламп фабричного производства.

Как видите, собрать драйвер своими руками не представляет особой сложности. Изменяя параметры элементов схемы, мы можем в широких пределах варьировать значения выходного сигнала.

Если у вас возникнет желание на основе такой схемы собрать схему светодиодного прожектора на 220 вольт, лучше переделать выходной каскад под напряжение 24В с соответствующим стабилизатором, поскольку выходной ток у L7812 1,2А, это ограничивает мощность нагрузки в 10Вт. Для более мощных источников освещения требуется либо увеличить количество выходных каскадов, либо использовать более мощный стабилизатор с выходным током до 5А и устанавливать его на радиатор.

Светодиоды по сравнению с традиционными лампочками накала эффективны, экономны и долговечны, однако при этом очень дороги, поэтому есть смысл изготовить их своими руками, но при этом для питания их от сети 220 В понадобится специальный драйвер. Поэтому рассмотрим, как самостоятельно изготовить этот модуль, что вообще он собой представляет и зачем нужен, каковы его особенности и принцип действия, как выглядит его схема, какие компоненты в ней применяются и каковы нюансы варианта без стабилизатора тока.

Что такое драйверы для светодиодов и зачем они нужны

Светимость полупроводникового лед-кристалла напрямую зависит от силы тока, проходящего через него. Нестабильность этого параметра, характерная для бытовой сети 220 В, приводит к быстрой деградации материала и выходу из строя светодиода. Поэтому и требуется для него драйвер. В его задачу входит преобразование параметров электрического тока в следующих направлениях:

  1. Стабилизация силы в точном значении выходных параметров.
  2. Задание амплитуды.
  3. Выпрямление из переменного в постоянный.

Обратите внимание! Величина напряжения на выходе из драйвера напрямую определяет способ и тип подключаемого светодиода. Если питание лампы идет от бытовой сети, параметр этого модуля должен быть на 220 В. Это нужно учитывать при покупке компонентов для светильника и стабилизатора, изготавливаемого своими руками.

Особенности драйвера светодиодов на 220 В

Главная особенность драйвера для светодиодов, питание которых осуществляется от 220 В, состоит в том, что он изменяет напряжение и предназначен для работы с электрическим током подобных характеристик. Поэтому для подключения лампочки не пригодны его низковольтные аналоги - например, от фонарика или автомобиля на 12 вольт. Кроме того, модели последнего типа могут включать в состав понижающий блок - трансформатор.

При изготовлении преобразователя своими руками следует знать его основные характеристики:

  1. Потребляемый ток. Должен совпадать со значением аналогичного параметра светодиодов, в противном случае они либо не будут выдавать полной яркости, заложенной производителем, либо перегорят.
  2. Мощность. Эта характеристика выражается в ваттах и равняется суммарной мощности всех led-узлов схемы.
  3. Напряжение на выходе. Находится в прямой зависимости от способа подключения и количества лед-элементов и падения напряжения на них - рассчитывается из суммарного их значения.

Расчет мощности при выборе ленты из последовательно соединенных светодиодов позволяет правильно подобрать драйвер для питания подсветки от 220 В. Итоговое значение равняется сумме данного параметра всех элементов плюс 25% (запас на возможную перегрузку). Например, в лед-полоске 20 элементов по 0,5 Вт каждый, общее значение составит 10W. Однако на практике лучше купить или изготовить своими руками прибор на 12-13 ватт.

Теория питания светодиодных ламп от 220В

Лэд-лампа, как правило, представляет собой набор пространственно расположенных в определенной композиции небольших, но достаточно мощных светодиодов (3,3 вольт и 1 ватт). Чтобы изготовить своими руками замену стандартной лампочке накаливания в 70-80 Вт, потребуется дюжина недорогих лед-элементов. Однако бытовая сеть 220 В имеет для них избыточные параметры.

Поэтому потребуется понизить амплитуд и силу, а также трансформировать переменный электрический ток в постоянный. Для этого понадобится драйвер, для изготовления своими руками которого применяется делитель напряжения на емкостной или резисторной нагрузке, а также стабилизаторы.


Для изготовления самодельного драйвера своими руками потребуются радиодетали для создания трех взаимодействующих сегментов:

  1. Делитель напряжения, основанный на емкостном сопротивлении.
  2. Мост из диодов.
  3. Стабилизатор.

Кроме того, понадобятся следующие инструменты, приборы и расходники:

  1. Паяльная станция мощностью около 30 Вт.
  2. Нейтральный флюс.
  3. Припой оловянно-свинцового состава.
  4. Пассатижи для загиба выводов.
  5. Кусачки для отреза проводки.
  6. Многожильные медные проводники в изоляции сечением от 0,35 до 1 мм 2 .
  7. Прибор для контрольного измерения (мультиметр).
  8. Изолента/трубка термоусадочная.
  9. Монтажная макетная плата на базе текстолита.

Внимание! Рассматриваемый вариант импульсного драйвера на 220 В для светодиода, изготавливаемого из своих средств, не имеет ограничения по производимому току. Поэтому обращаться с ним во включенном состоянии нужно крайне осторожно. На выходе сила тока может достигать 10 А - соприкосновение руками с оголенной проводкой может привести к мощному электроудару.

Инструкция по сборке драйвера своими руками

Инструкция по изготовлению своими руками драйвера светодиода с питанием от 220 В включает следующие действия:

  1. Подготавливается макетная плата необходимого размера.
  2. Сначала припаиваются крупные компоненты цепи.
  3. Затем поочередно в соответствии со схемой монтируются мелкие элементы - резисторы, диоды, конденсаторы.
  4. В последнюю очередь устанавливаются транзисторы и переменный резистор.
  5. Распределение компонентов должно быть таким, чтобы расстояние между ними было как можно меньше.
  6. Соединение диодов происходит с учетом полярности (для транзисторов - по распиновке).
  7. По завершении сборки схему нужно подключить и провести замеры мультиметром.

Создание драйвера для светильника из светодиодов для подключения их к питанию на 220 В доступно своими руками любому желающему, имеющему опыт работы с радиокомпонентами. В ходе сборки не потребуется особых оборудования и материалов - все инструменты и детали можно приобрести в специализированных магазинах. К тому же, при правильном подходе и качественных составляющих собранная схема обеспечит стабильность и долговечность прибору освещения не хуже покупного аналога.

Схема

Предложенная ниже схема драйвера представляет собой совокупность трех последовательно взаимодействующих между собой каскадов:

  1. Первая область отвечает за понижение амплитуды напряжения. В основе лежит емкостный керамический конденсатор (500 вольт) с резистором для самозарядки первого. Его номинал может варьироваться в широких пределах - от 100 до 1000 кОм и от 500 до 1000 мВт. Принцип действия его основан на том, что он пропускает ток до полной зарядки обкладок. При емкости в 0,3 мкФ это время составит всего десятую часть период полуволны 220 В - то есть всего 1/10 поступающего напряжения.
  2. Второй сегмент выполняет роль выпрямления тока из переменного в постоянный. Это цепь диодных полярно соединенных элементов. В данной цепи на выходе его номинал составит порядка 24 В (с учетом деления в предыдущем блоке).
  3. Заключительный элемент сглаживает и стабилизирует электроток. Для цели сглаживания применяется параллельно подключенный конденсатор электролитической модификации (емкость определяется мощностью нагрузки). Стабилизатором напряжения в предложенной схеме выступает модуль L7812.

Конденсатор в сочетании с диодным мостиком выполняет задачу делителя напряжения, поэтому если входное напряжение будет меняться, соответственно иное значение его получится и на выходе.

Компоненты

Для сборки своими руками предложенной выше схемы драйвера для светодиодов, питание которых осуществляется от 220В, потребуется следующий набор радиокомпонентов:

  1. Светодиоды 12 штук с параметрами - 3,3 вольта 1 ватт (для сборки своими руками лэд-лампы питанием от 220 В).
  2. Конденсатор керамического типа - 0,3 мкФ, 500 вольт - 1 штука.
  3. Резисторный модуль - от 0,5 до 1 Ом и 0,5-1 Вт - 1 экземпляр.
  4. Четыре диода по 100 В каждый.
  5. Пара конденсаторов электролитического типа на 16 вольт 100 и 330 мкФ.
  6. 12-вольтовый стабилизатор напряжения модели L7812, либо его аналог.

Вариант драйвера без стабилизатора тока

Рассмотрим схему подключения драйвера без блока стабилизатора. Как известно, отсутствие трансформатора в подобном приборе приводит к пульсации напряжения и, соответственно, яркости свечения светодиодов. Лишь частично эту проблему устраняет идущий после диодного мостика конденсатор. Однако пульсировать амплитуда все же будет - в рамках 2-3 вольт.

Вариант со стабилизатором на 12 вольт решают эту задачу полностью, поэтому и смонтированный своими руками такой драйвер по степени пульсации амплитуды напряжения не будет уступать покупным дорогим аналогам.


Рекомендация! При необходимости создания мощного прожектора на базе светодиодов с питанием от 220 В драйвер придется несколько модифицировать. В частности, в выходной сегмент лучше установить стабилизатор на 24 вольта, так как параметры тока у L7812 равны 1,2 ампера, что ограничивает светильник в рамках 10 ватт. Поэтому лучше выбрать стабилизирующий модуль на 5 А, однако ввиду его большого нагрева потребуется монтировать его на радиатор.

Даже самый простой светодиод, если его питание происходит от 220 В переменного тока, требует для стабильности работы драйвер. Его основное значение - стабилизация, выпрямление тока и снижение напряжения. Изготовлен ли он своими руками, или куплен в магазине, его характеризуют три основных параметра:

  1. Номинальный ток.
  2. Мощность.
  3. Напряжение на выходе.

Драйвер для питания светодиодов от 220 В состоит из трех взаимодействующих каскадов - емкостного делителя напряжения, диодного выпрямляющего мостика и стабилизатора. Для монтажа подобного прибора своими руками потребуется запастись необходимыми радиокомпонентами и набором инструментов, купить которые можно в любом специализированном магазине. В ходе сборки устройства нужно строго придерживаться предложенной схемы и инструкции.

Если у вас есть опыт создания своими руками аналогичного драйвера или иной его модификации для светодиода с питанием от сети 220 В, обязательно напишите об этом в комментариях.

Читайте также: