Как определить давление вентилятора: методы измерения и рассчета давления в вентиляционной системе

Обновлено: 28.04.2024

Если комфорту в доме вы уделяете достаточно внимания, то наверное, согласитесь, что качество воздуха должно стоять на одном из первых мест. Свежий воздух полезен для здоровья и мышления. В хорошо пахнущую комнату не стыдно пригласить гостей. Проветривать каждое помещение по десять раз в день — нелегкое занятие, неправда ли?

Многое зависит от выбора вентилятора и в первую очередь его давления. Но до того как определить давление вентилятора, нужно ознакомиться с некоторыми физическими параметрами. Прочитайте о них в нашей статье.

Благодаря нашему материалу вы изучите формулы, узнаете виды давления в вентиляционной системе. Мы привели для вас сведения о полном напоре вентилятора и двух способах, по которым его можно измерить. В итоге вы сможете самостоятельно измерить все параметры.

Давление в вентиляционной системе

Чтобы вентиляция была эффективной, нужно правильно подобрать давление вентилятора. Есть два варианта для самостоятельного измерения напора. Первый способ — прямой, при котором замеряют давление в разных местах. Второй вариант — рассчитать 2 вида давления из 3 и получить по ним неизвестную величину.

Давление (также — напор) бывает статическим, динамическим (скоростным) и полным. По последнему показателю выделяют три категории вентиляторов.

Аэродинамика вентилятора на графике

Аэродинамическая характеристика осевых вентиляторов на графике: Pv — полное давление, N — мощность, Q — расход воздуха, ƞ — КПД, u — скорость, n — частота вращения

В технической документации к вентилятору обычно указывают аэродинамические показатели, включая полное и статическое давление при определенной производительности. На практике «заводские» и реальные параметры часто не совпадают, и связано это с конструктивными особенностями вентиляционных систем.

Существуют международные и государственные стандарты, направленные на повышение точности измерений в лабораторных условиях.

В России обычно применяют методы A и C, при которых напор воздуха после вентилятора определяют косвенно, исходя из установленной производительности. В разных методиках в площадь выхода включают или не включают втулку рабочего колеса.

Формулы для расчета напора вентилятора

Напор представляет собой соотношение воздействующих сил и площади, на которую они направлены. В случае с вентканалом речь идет о воздухе и сечении.

Поток в канале распределяется неравномерно и не проходит под прямым углом к поперечному разрезу. Узнать точный напор по одному замеру не удастся, придется искать среднее значение по нескольким точкам. Сделать это нужно и для входа, и для выхода из вентилирующего прибора.

Осевой вентилятор

Осевые вентиляторы используют отдельно и в воздуховодах, они эффективно работают там, где нужно переносить большие массы воздуха при относительно низком давлении

Полное давление вентилятора определяют по формуле Pп = Pп (вых.) — Pп (вх.), где:

  • Pп (вых.) — полное давление на выходе из устройства;
  • Pп (вх.) — полное давление на входе в устройство.

Для статического давления вентилятора формула отличается незначительно.

Ее записывают как Рст = Рст (вых.) — Pп (вх.), где:

  • Рст (вых.) — статическое давление на выходе из устройства;
  • Pп (вх.) — полное давление на входе в устройство.

Статический напор не отображает нужное количество энергии для ее передачи системе, а служит дополнительным параметром, по которому можно узнать полное давление. Последний показатель — основной критерий при выборе вентилятора: как домашнего, так и промышленного. Снижение полного напора отображает потерю энергии в системе.

Статическое давление в самом вентиляционном канале получают из разницы статического давления на входе и выходе из вентиляции: Рст = Pст 0 — Рст 1. Это второстепенный параметр.

График статического давления и расхода

Проектировщики подают параметры с учетом небольшого засорения или без такового: на изображении показано несоответствие статического давления одного и того же вентилятора в разных вентиляционных сетях

Правильный выбор вентилирующего устройства включает такие нюансы:

  • подсчет расхода воздуха в системе (м³/с);
  • подбор устройства на основе такого расчета;
  • определение скорости на выходе по выбранному вентилятору (м/с);
  • расчет Pп устройства;
  • измерение статического и динамического напора для сравнения с полным.

Для расчета места для замера напора ориентируются на гидравлический диаметр воздуховода. Его определяют формулой: D = 4F / П. F — это площадь сечения трубы, а П — ее периметр. Расстояние для определения места замера на входе и выходе измеряют количеством D.

Как вычислить давление в вентиляции?

Полный напор на входе измеряют в поперечном сечении вентиляционного канала, находящемся на расстоянии двух гидравлических диаметров воздуховода (2D). Перед местом измерения в идеале должен быть прямой фрагмент воздуховода с длиной от 4D и невозмущенным течением.

На практике вышеописанные условия встречаются редко, и тогда перед нужным местом устанавливают хонейкомб, который выпрямляет поток воздуха.

Потом в систему вентиляции вводят приемник полного давления: в несколько точек в сечении по очереди — минимум в 3. По полученным значениям высчитывают средний результат. У вентиляторов со свободным входом Pп входное соответствует давлению окружающей среды, а избыточный напор в таком случае равняется нулю.

Трубка полного давления

Схема приемника полного давления: 1 — приемная трубка, 2 — преобразователь давления, 3 — камера торможения, 4 — держатель, 5 — кольцевой канал, 6 — передняя кромка, 7 — входная решетка, 8 — нормализатор, 9 — регистратор выходного сигнала, α — угол при вершинах, h — глубина впадин

Если измерять сильный поток воздуха, то по давлению следует определить скорость, а потом — сопоставить ее с размером сечения. Чем выше скорость на единицу площади и чем больше при этом сама площадь, тем производительнее вентилятор.

Полный напор на выходе — понятие сложное. Выходящий поток имеет неоднородную структуру, которая также зависит от режима работы и типа прибора. Воздух на выходе имеет зоны возвратного движения, что усложняет расчет напора и скорости.

Закономерность для времени появления такого движения установить не удастся. Неоднородность течения достигает 7—10 D, но показатель можно снизить выпрямляющими решетками.

Измерение с трубкой Прандтля

Трубка Прандтля является усовершенствованным вариантом трубки Пито: приемники выпускают в 2 вариантах — для скоростей меньше и больше 5 м/с

Иногда на выходе из вентилирующего устройства стоит поворотное колено или отрывной диффузор. В таком случае течение будет еще более неоднородным.

Напор тогда измеряют по следующему методу:

  1. За вентилятором выбирают первое сечение и сканируют его зондом. По нескольким точкам измеряют средний полный напор и производительность. Последнюю потом сравнивают с производительностью на входе.
  2. Дальше выбирают дополнительное сечение — на ближайшем прямом участке после выхода из вентилирующего прибора. От начала такого фрагмента отмеряют 4—6 D, а если длина участка меньше, то выбирают сечение в самой отдаленной точке. Затем берут зонд и определяют производительность и средний полный напор.

От среднего полного давления на дополнительном сечении отнимают расчетные потери на отрезке после вентилятора. Получают полное давление на выходе.

Потом сравнивают производительность на входе, а также на первом и дополнительном сечениях на выходе. Правильными следует считать входной показатель и один из выходных — более близкий по значению.

Прямолинейного отрезка нужной длины может и не быть. Тогда выбирают сечение, которое разделяет участок для замера на части с соотношением 3 к 1. Ближе к вентилятору должна быть большая из этих частей. Замеры нельзя производить в диафрагмах, шиберах, отводах и других соединениях с возмущением воздуха.

Напоромер для воздушной среды

Перепады давления можно регистрировать напоромерами, тягомерами по ГОСТ 2405-88 и дифманометрами по ГОСТ 18140-84 с классом точности 0,5—1,0

В случае с крышными вентиляторами Pп измеряют только на входе, а на выходе определяют статическое. Скоростной поток после вентилирующего устройства теряется почти полностью.

Также рекомендуем прочесть наш материал о выборе труб для вентиляции.

Особенности расчета напора

Измерение давления в воздушной среде усложняется из-за ее быстро меняющихся параметров. Манометры следует покупать электронные с функцией усреднения результатов, получаемых за единицу времени. Если напор резко скачет (пульсирует), пригодятся демпферы, которые сглаживают перепады.

Следует помнить такие закономерности:

  • полное давление — это сумма статического и динамического;
  • полный напор вентилятора должен равняться потерям давления в вентиляционной сети.

Измерить статическое давление на выходе не составит труда. Для этого используют трубку для статического напора: один конец вставляют в дифманометр, а другой направляют в сечение на выходе из вентилятора. По статическому напору вычисляют скорость потока на выходе из вентилирующего прибора.

Динамический напор тоже измеряют дифманометром. К его соединениям подключают трубки Пито — Прандтля. К одному контакту — трубку для полного напора, а к другому — для статического. Полученный результат будет равняться динамическому давлению.

Чтобы узнать потери давления в воздуховоде, можно проконтролировать динамику потока: как только вырастает скорость движения воздуха, повышается сопротивление вентиляционной сети. Напор теряется из-за этого сопротивления.

Термоанемометр для вентиляционной системы

Анемометры и термоанемометры измеряют скорость потока в воздуховоде при значениях до 5 м/с или больше, анемометр следует выбирать по ГОСТ 6376—74

При росте скорости вентилятора статический напор падает, а динамический растет пропорционально квадрату увеличения расхода воздуха. Полное давление не изменится.

С правильно подобранным устройством динамический напор изменяется прямо пропорционально квадрату расхода, а статический — обратно пропорционально. В таком случае количество используемого воздуха и нагрузка электродвигателя если и будут расти, то несущественно.

Некоторые требования к электродвижку:

  • малый пусковой момент — по причине того, что расход мощности меняется в соответствии с изменением количества оборотов, подведенного к кубу;
  • большой запас;
  • работа на максимальной мощности для большей экономии.

Мощность вентилятора зависит от полного напора, а также от КПД и расхода воздуха. Последние два показателя коррелируют с пропускной способностью вентсистемы.

На стадии ее проектирования придется расставить приоритеты. Учесть затраты, потери полезного объема помещений, уровень шума.

Обзор физических показателей, которые нужны для измерений:

Роль давления в вентиляционной сети:

Вентилятор — простая конструкция в виде колеса с лопастями. Одновременно это главная часть вентиляционной системы. Механический прибор влияет на напор в воздуховоде и определяет эффективность вентиляции.

Если хотите рассчитать давление вентилятора, разберитесь с такими величинами, как скорость, расход воздуха, мощность. Вы будете лучше понимать суть измерений. Главный показатель, полный напор измеряйте по описанных нами схемах.

Если у вас есть вопросы — задавайте их в форме под статьей. Пишите комментарии и обменивайтесь ценными знаниями с другими читателями. Возможно, у вас есть опыт в проектировании систем вентилирования — он будет полезен в чьей-то конкретной ситуации.

Полное давление вентилятора определяют по формуле Pп = Pп (вых.) — Pп (вх.) , где:

Статический напор не отображает нужное количество энергии для ее передачи системе, а служит дополнительным параметром, по которому можно узнать полное давление. Последний показатель — основной критерий при выборе вентилятора : как домашнего, так и промышленного. Снижение полного напора отображает потерю энергии в системе.

Статическое давление в самом вентиляционном канале получают из разницы статического давления на входе и выходе из вентиляции: Рст = Pст 0 — Рст 1 . Это второстепенный параметр.

Для расчета места для замера напора ориентируются на гидравлический диаметр воздуховода. Его определяют формулой: D = 4F / П . F — это площадь сечения трубы, а П — ее периметр. Расстояние для определения места замера на входе и выходе измеряют количеством D.

Также рекомендуем прочесть наш материал о выборе труб для вентиляции .

К вентилятору, поставляемому для вентиляционной системы, обычно при­лагается паспорт с аэродинамической характеристикой, из которой можно опре­делить) какие полное и статическое давления должен давать вентилятор при заданной производительности.

Как в реальных условиях (на месте эксплуатации) можно измерить производительность вентилятора в реальной сети?

Полное давление вентилятора: р V = р20 — р10

р20 — полное давление на вы­ходе из вентилятора;

р10 — полное давление на входе вентилятора.

Статическое давление вентилятора: р SV = р2 — р10

р2 — статическое давле­ние на выходе из вентилятора.

Эти формулы внешне очень простые, и в большинстве случаев в лаборатор­ных условиях не возникает проблем с измерением аэродинамических характери­стик вентиляторов, если имеется четкая договоренность о содержании этих тер­минов и методах измерения указанных величин. Для этого существуют отечественные, зарубежные и международные стандарты методов измерений аэродинамических характеристик вентиляторов. Они в некоторых деталях мнут отличаться друг от друга, поэтому при рассмотрении аэродинамических характе ристик зарубежных вентиляторов необходимо выяснять из данных каталога условия и методику измерений, чтобы исключить возможные ошибки трактовки результатов. Так, например, в отечественных установках наиболее часто реализова ны испытаний А или С, когда скоростной напор на выходе определяется пересчетом из производительности вентилятора. В зарубежных установках встречается также, например, схема В, когда производится непосредственное измерение полного давления за вентилятором. С учетом неравномерных полей скоростей на выходе из вентилятора метод схемы В может дать несколько отли­чающиеся результаты по полному давлению вентилятора. Еще один пример. При испытаниях осевых вентиляторов площадь выхода может опр еделяться по диаметру рабочего колеса или по диаметру рабочего колеса за вычетом пло­шали втулки. При этом получаются разные площади выхода и, соответственно, разные полные давления вентилятора.

Если вентилятор уже установлен и присоединен к сети, то измерение его аэродинамических параметров (давления и производительности) может вызвать некоторые трудности. Рассмотрим ряд особенностей таких измерений.

Для определения давления вентилятора, во-первых, надо измерить полное дав­ление в воздуховоде перед вентилятором. Измерительное сечение формально должно находиться на расстоянии не менее 2D от входа вентилятора ( D — диаметр или гидравлический диаметр воздуховода). Кроме того, перед измерительным се­чением должен быть отрезок прямого воздуховода с невозмущенным течением длиной не менее 4 D ). Как правило, такие условия входа встречаются редко. Если перед входом в вентилятор расположено поворотное колено или кап либо другое устройство, нарушающее однородную структуру течения в измери­тельном сечении, то необходимо перед измерительным сечением устанавливать выравнивающий поток решетку (хонейкомб). Если измерительное сечение удовлетворяет требованиям измерений, то их можно выполнять в соответствии с описанной выше процедурой. С помощью вводимого в воздуховод приемника полного давления измеряются полные давления в ряде точек поперечного сече­ния, определяется соответствующее среднее значение полного давления в сечении. Если одновременно измерять скоростной напор, то можно определить производительность вентилятора, проинтегрировав полученные локальные рас­ходные скорости по площади измерительного сечения. Если вентилятор имеет свободный вход, то полное давление на входе р10 равно давлению окружающей среды (т. е. избыточное давление равно нулю).

Для измерения полного давления за вентилятором важно наиболее правильно выбрать положение измерительного сечения, поскольку структура потока на выходе из вентилятора неоднородна по сечению и зависит от типа вентилятора и режима его работы. Поле скоростей в поперечном сечении на выходе из вен­тилятора в ряде случаев может иметь зоны возвратных токов и, как правило, не­ стационарно во времени. Если в воздуховоде нет спрямляющих поток решеток, то неоднородности течения могут распространяться довольно далеко вниз по по­току (до 7—10 калибров). Если за вентилятором есть диффузор с большим углом раскрытия (отрывной диффузор) или поворотное колено, то течение после них также может быть очень неоднородно по сечению. Поэтому можно предложить следующую методику измерений. Одно измерительное сечение выбрать непо­средственно за вентилятором и подробно просканировать его зондом, измеряя полное давление и скоростной напор, и определить среднее полное давление и производительность вентилятора. Производительность сравнить с соответ­ствующей величиной, полученной по измерениям во входном измерительном сечении вентилятора. Дополнительное измерительное сечение выбрать на бли­жайшем после выхода прямолинейном участке воздуховода на расстоянии 4—6 калибров от начала этого участка (на максимально возможном расстоянии от начала участка, если длина его меньше). С помощью зонда измерить распре­деления по сечению полного давления и скоростного напора и определить сред­нее полное давление и производительность вентилятора. Из полученного полно­го давления вычесть расчетную величину потерь на отрезке воздуховода от выхода из вентилятора до измерительного сечения, это и будет полное давле­ние на выходе из вентилятора. Сравнить производительность вентилятора со значениями, полученными для входа в вентилятор и непосредственно на вы­ ходе. Обычно удовлетворительные для измерения производительности вентиля­тора условия проще обеспечить на входе, поэтому надо выбрать сечение на вы ходе, которое более соответствует по производительности входному сечению. В случае крышного вентилятора напорная сеть отсутствует, и измерения прово­дятся только на входе вентилятора. При этом скоростной напор на выходе из вен­тилятора полностью теряется, и для него измеряется характеристика только по статическому давлению.

Измерение аэродинамических параметров вентилятора сопряжено еще с одной трудностью — не стационарностью параметров потока. При пневмометрических измерениях для получения достоверных данных используют различ­ного рода демпферы — устройства, сглаживающие пульсации давления. На рынке измерительной техники существуют электронные манометры с математическим временным осреднением давления.

Читайте также: