Особенности светодиодной технологии, схемы светодиодных устройств, перспективы OLED-светодиодов

Обновлено: 25.04.2024

В последние несколько лет можно было наблюдать резкий всплеск развития технологий в области oled освещения и органических светодиодов. Вызвано это тем, что произошло осознание того, что технологии освещения при помощи органических светодиодов являются будущим данной индустрии. На текущий момент сотни известных и малоизвестных компаний разрабатывают, исследуют и производят OLED-устройства на органических светодиодах. Обороты рынка в данном направлении уже достигли миллиарды долларов. И все только начинается, в будущем органические светодиоды смогут найти большее применение.

Принцип действия

Органические светодиоды (OLED) представляют полупроводниковые приборы, созданные из ряда пленок органического происхождения. При прохождении электрического тока через данное соединение происходит излучение света.

Органический светодиод включает следующие элементы:

Подложка выполняется из фольги, стекла или пластика. Анод производится из оксида индия с легированием оловом. В качестве излучающего и проводящего слоя используются низкомолекулярные органические вещества и полимеры. Катод производится из металла в виде алюминия и кальция.

Органические светодиоды работают по следующему принципу:
  • На анод подается положительное напряжение, после чего стартует движение электронов к аноду от катода.
  • Отдача электронов в излучающий слой приводит к переходу электронов из проводящего слоя к аноду, то есть от анода к проводящему слою отходят носители положительного заряда, называемыми дырками.
  • В результате электроны и дырки направляются друг другу навстречу. В месте их контакта будет наблюдаться снижение энергии электронов, благодаря чему будет происходить излучение, то есть свечение.
Особенности органических светодиодов
  • Главное свойство органических светодиодов — равномерное распределение по всей площади. Подобная технология приобрела аббревиатуру OLED.
  • Принципиальное отличие устройств OLED от аналогов на базе ЖК-технологии кроется в применении органических веществ, которые излучаются под действием электрического поля. В свою очередь свет в ЖК-дисплеях излучается лампой подсветки и направляется через светофильтры и ЖК-матрицы. Благодаря указанной особенности в OLED-дисплеях нет нужды использовать поляризующие пленки, лампу подсветки, а также иные компоненты, которые являются обязательными элементами ЖК-устройств.
  • OLED-дисплеи за счет более простой структуры можно сделать невероятно легкими и тонкими. К тому же они способны работать от меньшего напряжения, если сравнивать с ЖК. Также они выделяют незначительное число тепла и выделяются низким уровнем энергопотребления.
Применение
На текущий момент OLED-технология используется в многочисленных узкоспециализированных разработках:
  • Для создания специализированных приборов ночного видения.
  • Органические дисплеи встраиваются в автомобильные бортовые компьютеры, цифровые фотоаппараты, телефоны в коммерческие OLED-телевизоры (на данный момент преимущественно в переносные).
  • Создаются небольшие OLED-дисплеи для лицевых панелей автомагнитол, цифровых индикаторов, карманных цифровых аудиопроигрывателей и тому подобное. Прорабатывается возможность серийного выпуска электронных книг и планшетных компьютеров с OLED-дисплеями.

Рынок OLED-дисплеев медленно, однако достаточно уверенно растет. Среди крупных производителей, использующих органические светодиоды можно отметить LG, RiTdisplay, Pioneer и Samsung. К коммерческому производству готовятся Hitachi, Canon, Matsushita Electric Industrial, Toshiba, Panasonic и многие другие компании.

Достоинства и недостатки Среди преимуществ применения OLED-технологии в дисплеях можно выделить:
  • Если сравнивать с плазменными дисплеями;
    — меньший вес и габариты;
    — возможность создания гибких экранов;
    — сравнительно низкое энергопотребление с сохранением аналогичной яркости изображения;
    — возможность создания экранов, имеющих большое разрешение к размеру;
  • Если сравнивать с жидкокристаллическими дисплеями;
    — отсутствие необходимости в подсветке;
    — меньший вес и габариты;
    — мгновенный отклик, полное отсутствие инерционности;
    — большие углы обзора - на дисплее изображение видно с любого угла без потери качества;
    — высокая контрастность;
    — значительный диапазон рабочих температур;
  • OLED-дисплеи обеспечивают высокую контрастность (10 000:1 и более).
  • OLED-дисплеи могут обеспечить широкий диапазон яркости излучения.
    — для ночной работы — от нескольких кд/м².
    — до высочайшей яркости - более 100 000 кд/м². При этом можно регулировать яркость в широчайшем динамическом диапазоне.
  • Энергопотребление у OLED-дисплеев прямо пропорционально площади свечения и яркости. Дисплеи ЖК требуют малой величины тока, но вспомогательные средства, которые обеспечивают ее работу, также могут потреблять энергию.
Среди достоинств самих органических светодиодов можно выделить:
  • Низкое энергопотребление.
  • Равномерное распределение света по поверхности материала.
  • Длительный срок службы.
  • Высокий коэффициент полезного действия.
  • Более высокая экологичность и энергоэффективность вследствие отсутствия в них тяжелых металлов.
  • Мягкий свет, от которого не устают глаза.
  • Существенная тонкость, гибкость и долговечность.
Среди недостатков органических светодиодов можно выделить:
  • Сравнительно маленький на данный момент срок службы диодов, обеспечивающих некоторые цвета (несколько лет).
  • Дороговизна технологии в создании больших OLED-матриц.
  • Неотработанная технология.
  • Высокая стоимость изготовления.
  • Органические материалы, применяемые для создания органических светодиодов, довольно активно контактируют с водой: окисляются и органика. Поэтому требуется надежная герметизация. На данный момент падения и удары подобным экранам противопоказаны.
Ближайшее будущее органических светодиодов

Сегодня компании активно инвестируют в исследования и само производство. Планируется, что именно органические светодиоды станут основной экранной технологией в конце второго десятилетия XXI века.

Электронные устройства с дисплеями стали неотъемлемой частью нашей повседневной жизни, требуя к себе всё больше и больше внимания. К экранам мониторов и телевизоров, планшетных ПК и смартфонов, фото- и видеокамер ежедневно прикован взгляд миллионов людей. Кто-то работает, кто-то развлекается, но все желают видеть качественное изображение на дисплее.

На протяжении последних лет лидерство в производстве матриц удерживает LCD технология с LED подсветкой. Однако ей не перестаёт «наступать на пятки» OLED технология, основанная на способности органических светодиодов излучать свет. Что же такое OLED дисплеи и что мешает им на равных конкурировать с ЖК экранами?

Принцип работы и технология изготовления

Organic light-emitting diode или сокращенно OLED представляет собой полупроводниковый прибор, созданный на основе органических соединений, которые при пропускании электрического тока излучают видимый свет. В единичном экземпляре органический светодиод не представляет практического интереса. Поэтому их объединяют в матрицы для создания устройств отображения информации.

схематическое представление технологии OLED

Технология OLED - это процесс создания тонкоплёночной структуры, на которую нанесено несколько слоёв полимеров, имеющих различную проводимость.На рисунке в вертикальном разрезе показана OLED структура в двухслойной интерпретации. Здесь два полимерных слоя находятся между электродами (анодом и катодом), на которые подают напряжение соответствующей полярности. При этом верхний (эмиссионный) слой наполняется электронами, испускаемыми катодом, которые устремляются к границе с нижним (проводящим) слоем. Одновременно с этим проводящий слой получает положительный заряд от анода, направляя дырки к границе с верхним слоем. Граница двух полимеров напоминает p-n-переход обычного полупроводника, где происходит процесс рекомбинации. Но в данном случае заряженные частицы рекомбинируют в эмиссионном слое, что достигается за счет большей скорости дырок в органических структурах. Так же как и в обычных светодиодах, потеря энергии электроном сопровождается эмиссией фотонов в видимом волновом спектре. По этой причине верхний слой назван эмиссионным.

Органический светодиод излучает свет только при соблюдении полярности питающего напряжения. Если к электродам приложить обратное напряжение, то электроны и дырки рекомбинировать не будут. Материалом для анода, как правило, служит плёнка из прозрачного оксида индия, а для катода - из алюминия или кальция.

Основные направления

Независимое проведение исследований по созданию OLED матриц среди учёных разных стран способствовало появлению светодиодных дисплеев, отличающихся по типу и назначению. Каждая из технологий имеет свои практические преимущества и, следовательно, перспективу развития.

TOLED (Transparent OLED) - позиционируется как прозрачное органическое светоизлучающее устройство. Технологически можно задать любое направление излучения, включая двустороннее. TOLED отличаются высококонтрастным изображением и прозрачностью плёнки в выключенном состоянии, что значительно расширяет область их применения. FOLED (Flexible OLED) - реализуется за счёт фиксации органической плёнки между гибкими электродами. В качестве электродов может выступать как тончайшая алюминиевая фольга, так и прозрачная плёнка, позаимствованная у TOLED. Таким образом, можно создавать гибкие прозрачные экраны с широкими возможностями, размещая их на лобовом стекле авто и в самолётах. Уже сейчас в продаже есть телевизоры с выгнутым OLED дисплеем. SOLED (Stacked OLED) - представляет собой структуру вертикально сложенных органических светодиодов. Каждый подпиксель (синий, красный, зелёный) расположен друг над другом, что позволяет в несколько раз повысить разрешающую способность экрана. Неоспоримая особенность SOLED - это коэффициент заполнения цвета, равный 100%. Это означает, что при задании на экране красного цвета все пиксели будут светиться только красным. Включение аналогичного режима в дисплеях с горизонтальной структурой приведёт к отключению синего и зелёного пикселей. В результате появятся так называемые пробелы, которые станут заметны на экранах с большой диагональю.

Очевидно, что последующее развитие OLED технологий состоит в совокупной реализации указанных методик и выпуске гибких прозрачных дисплеев высокой контрастности.

Отдельной строкой стоит выделить OLED панели белого свечения. Их практическая реализация более проста, так как исключает необходимость в создании отдельных пикселей и управляющих матриц. С помощью люминофора можно задать любой оттенок, а изменяя ток - регулировать яркость. Панели большого размера можно будет использовать в качестве экономичных потолочных и настенных светильников.

Основные отличия OLED дисплеев

Приоритетным отличием OLED от LCD дисплеев является отсутствие блока подсветки. Органические светодиоды самостоятельно излучают свет и для формирования изображения им не нужен дополнительный источник света. В свою очередь, качество изображения LCD экрана напрямую зависит от вида подсветки и, несмотря на замену люминесцентных ламп более компактными LED, без неё нельзя обойтись. Даже самая тонкая LED подсветка состоит из SMD-светодиодов, световодов, отражателей и узлов их крепления, что естественно сказывается на толщине, массе, качестве изображения и надёжности изделия.

Помимо этого, OLED матрицам приписывают меньшее энергопотребление, опять-таки из-за отсутствия подсветки. Однако это отличие не настолько существенно. Чтобы засветить каждый органический светодиод, через него необходимо пропустить ток. В результате OLED телевизор с диагональю 55″ потребляет около 100 Вт, что соизмеримо с потреблением аналогичного LCD телевизора.

Важная характеристика любого дисплея - это угол обзора. В OLED экранах этот параметр доведён до совершенства, а значит, смотреть на него можно с любой стороны, сверху и снизу без ухудшения качества изображения. В LCD панелях подобный результат достигнут на IPS матрицах. Однако полностью избавиться от искажений не удалось.

Контрастность OLED дисплеев в несколько раз выше, чем у жидкокристаллических аналогов, что объясняется двумя факторами. Во-первых, отсутствует дополнительная подсветка. Во-вторых, выключенный органический светодиод ничего не излучает, а значит, воспринимается глазом как абсолютно черная точка. Контрастность ныне выпускаемых телевизоров составляет 10000:1. По утверждению разработчиков - это далеко не предел.

По быстродействию дисплей OLED превосходит LCD в 1000 раз. Об этом свидетельствует время отклика, равное примерно 10 мкс. Сравнивая это значение с возможностями человеческого глаза, можно смело утверждать об отсутствии инерционности при просмотре самых динамических видеосюжетов.

Яркость свечения каждого Organic LED зависит от величины прямого тока. Управляя током пикселей, можно добиться требуемой яркости без потери качества, что невозможно было реализовать в LCD технологии. Работать за OLED монитором одинаково приятно как в ночное время, так и в солнечную погоду. В теории показатель яркости OLED матрицы может превышать 100 тыс. кд/м2. Но в таком режиме срок службы светодиодов резко снижается. Поэтому на практике пока ограничиваются яркостью в 1000 кд/м2.

Преимущества и недостатки технологии OLED

На основании предыдущего раздела можно выделить несколько положительных моментов, благодаря которым дисплеи на органических светодиодах превосходят все предыдущие технологии:

- меньший вес и размеры, что достигается за счёт малой толщины матрицы;
- низкое потребление энергии, которое в перспективе ещё снизится;
идеальный угол обзора;
- отсутствие подсветки;
- контрастность, яркость и время отклика на несколько порядков лучше, чем у LCD;
- возможность создания гибких и прозрачных экранов, которые будут стабильно работать в широком диапазоне температур.

Как любой технологический процесс, изготовление OLED матриц имеет недостатки, которые существенно тормозят их серийное производство. Причём главный сдерживающий фактор не столько зависит от несовершенства технологии, сколько определяется покупательской способностью.

Второй недостаток заключается в малом времени непрерывной работы органических светодиодов некоторых цветов. Но эта проблема уже успешно решается, что подтверждается серийным выпуском ноутбуков и телевизоров с OLED матрицей компаниями с мировым именем.

К минусам можно отнести эффект выжигания экрана, который возникает за счёт длительного отображения статического изображения. Эффект напоминает проявление ложной картинки на ЭЛТ и плазменных мониторах. Чтобы исключить выжигание светодиодов, в новых моделях матриц реализован динамический сдвиг цветных пикселей, незаметный для глаз.

Технология OLED ещё несколько лет будет совершенствоваться и дорабатываться, что на сегодняшний день также можно назвать её отрицательной стороной.

Перспективы и область применения

В том, что OLED технология будет доминировать на рынке электроники, сомнений нет. Но пока этот инновационный способ отображения информации вынужден преодолевать большие трудности, связанные с необходимостью больших коммерческих вливаний. По этой причине некоторые компании значительно сократили расходы или вовсе прекратили финансирование исследований по созданию собственных OLED матриц. Например, Sony сделала ставку на производство LCD телевизоров с разрешением 4К, считая такой подход экономически оправданным.

Среди тех, кто не собирается сдаваться и продолжает улучшать качество дисплеев на органических светодиодах, фаворитами являются южнокорейские LG и Samsung. В ближайшем будущем эти компании рассчитывают снизить себестоимость OLED матриц и стать главными их поставщиками для других производителей электронной техники.

Уже сейчас можно наблюдать активное продвижение «умных» гаджетов с небольшими экранами. OLED часы, смартфоны, нетбуки находят своих покупателей, для которых переплата в 20-30% - ничто по сравнению с супер качественным изображением. Розничная цена OLED телевизора диагональю 55˝ на данный момент в 2-2,5 раза выше, чем LCD телевизора с такими же параметрами.

Насколько быстро OLED сможет взять верх - покажет время. Одно можно сказать с уверенностью - рынок OLED дисплеев будет прогрессировать с каждым годом.

Светодиоды вытеснили большинство других технологий в освещении. Благодаря своей универсальности, низкой стоимости и эффективности светодиоды теперь используются в любых приложениях в самых разных случаях: индикаторы состояния, подсветка ЖК-дисплеев, а также освещение помещений или уличное освещение - все это области, в которых теперь более удобно (экономически, а не технологически) использовать светодиоды, а не классические источники излучения света.

Давайте посмотрим на характеристики, которые сделали светодиоды стандартом для источников света и связанных типов приложений.

Светодиодные технологии

Физика светодиода

Светодиод - это активный полупроводниковый электронный компонент, основой которого является диод. Фраза «светоизлучающий диод» подчеркивает, что эта технология представляет собой не что иное, как p-n-переход с геометрическими и физическими характеристиками, предназначенный для использования эффекта электролюминесценции полупроводников.

Фактически, при прямом смещении p-n-перехода с соответствующим напряжением, превышающим пороговое (или прямое) напряжение, заряды около перехода перемещаются с одного энергетического уровня на другой.

Когда дырки и электроны рекомбинируют, если выделяемая энергия достаточно высока, будут испускаться фотоны, частота которых (следовательно, цвет) и сила света зависят от физических характеристик материала и от уровня напряжения, приложенного к устройству. Это основа цветных светодиодов.

Помимо цвета излучаемого света, минимальное пороговое напряжение, запускающее ток, также зависит от типа полупроводника, из которого изготовлено устройство. Наиболее часто используемые материалы для изготовления светодиодов - это AlGaAs, GaAlP, GaAsP, SiC, GaN, GaP, Si и C.

Подробнее про устройство светодиодов читайте здесь: Как устроены и работают светодиоды, а про их производство здесь: Как делают светодиоды

Схемы светодиодных устройств

Светодиод - это электронный компонент, управляемый током. По этой причине в цепи управления всегда должно быть предусмотрено сопротивление, ограничивающее ток, без которого единственным сопротивлением было бы внутреннее сопротивление самого перехода. Отказ от ограничения тока может привести к повреждению компонента и отклонению поведения от одного устройства к другому.

На рисунке ниже показана базовая схема управления светодиодом. В этой схеме положительное напряжение подается на базу полевого МОП-транзистора, вызывая прохождение тока между стоком и истоком, тем самым проводя светодиод на сток.

Обратите внимание на наличие ограничивающего резистора. Предполагая, что оптимальный прямой ток компонента равен If , пороговому напряжению Vth и напряжению питания светодиода Vin , номинал ограничивающего резистора рассчитывается как R = ( Vin - Vth ) / If.

Например, классический светодиод, используемый в качестве индикатора состояния питания, может иметь Vth = 1,8 В и If = 20 мА. Предполагая запитать схему напряжениемVin = 5 В, ограничительный резистор будет иметь значение R = (5 - 1,8) / 0,02 = 160 Ом.

Базовая схема драйвера светодиода

Базовая схема драйвера светодиода

Предлагаемая схема используется, когда управление осуществляется через микроконтроллер. В этом случае всегда рекомендуется использовать транзистор (или аналогичный компонент), способный выдерживать прямые токи светодиодов: если компонент был подключен непосредственно к выходу микроконтроллера, риск повреждения микросхемы будут чрезвычайно высокими.

Очевидно, что если есть необходимость управлять мощными светодиодами (которые могут поглощать даже более 3 Вт или 5 Вт), необходимо использовать драйверы, соответствующие требуемому току.

Одной из характеристик, которая позволила светодиодам стать популярными в мире освещения, несомненно, является возможность использования метода широтно-импульсной модуляции (ШИМ) для достижения диммирования, то есть повышения или понижения тока, протекающего в светодиодах (следовательно, при этом регулируется его световой поток).

Этот метод заключается в подаче управляющего сигнала, имеющего прямоугольную форму с переменным рабочим циклом: поэтому используемый ток будет пропорционален времени Ton приложенной волны, что позволяет электронное управление яркостью светодиода.

ШИМ-управление

Ясно, что метод ШИМ, который чрезвычайно прост в применении, может оказаться неэффективным, если требуется точная регулировка яркости. Фактически, помните, что, поскольку светодиод является диодом во всех отношениях, его вольт-амперная характеристика нелинейна и, следовательно, изменения тока, полученные путем изменения рабочего цикла, также являются нелинейными.

Чтобы преодолеть этот недостаток, необходимо использовать специально разработанные драйверы светодиодов, обеспечивающие постоянный ток по сравнению с пропорциональным сигналом напряжения. Это решение позволяет избежать непрерывных циклов включения и выключения светящихся компонентов, улучшая как продолжительность работы устройств, так и качество излучаемого света, поскольку при этом он не мерцает.

Еще несколько полезных материалов про схемы подключения светодиодов:

Применение светодиодов

Как упоминалось выше, светодиоды очень универсальны, и это также связано с тем, что доступны разные типы.

Классифицируя их по рассеиваемой мощности (следовательно, по производимому световому потоку), мы можем в основном найти три типа светодиодов: светодиоды малой мощности, светодиоды высокой яркости и светодиоды большой мощности.

Маломощные светодиоды имеют типичный прямой ток 15 мА и используются в качестве индикаторов состояния в электронных устройствах (индикатор включения, состояние соединения, индикатор связи между устройствами и т. д.). Их использование является самым классическим и старым. Угол освещения не важен для этого типа устройств.

Светодиоды высокой яркости имеют типичный прямой ток в диапазоне от 30 мА до 100 мА и могут использоваться в качестве элементов слабого освещения (например, индикаторов пешеходных дорожек), хотя в основном они используются в качестве подсветки сегментных дисплеев и ЖК-панелей. Последнее дало значительный импульс распространению светодиодов, поскольку большинство ЖК-панелей современных телевизоров используют светодиодную подсветку.

RGB-светодиод

Мощные светодиоды имеют прямой ток от 100 мА и выше. Легко представить, что этот тип устройств имеет значительно более высокую стоимость по сравнению с двумя другими категориями, а его тепловые характеристики требуют тщательного проектирования методов охлаждения устройства.

Типичное применение мощных светодиодов - это, несомненно, функциональное и уличное освещение. Одно устройство этого типа может излучать световой поток даже более 350 люмен, а объединив несколько светодиодов, можно получить настоящие уличные фонари. Уличное освещение с помощью светодиодных уличных фонарей - один из краеугольных камней умных городов.


Автономный уличный светодиодный светильник с солнечной панелью

Новые горизонты светодиодов

В последние годы на рынке появилась технология, в которой используются органические компоненты (точнее, пластичные проводящие полимеры), а также электролюминесценция этих материалов.

Это технология, называемая органическими светодиодами (OLED), которая используется в конструкции дисплеев и позволяет создавать тонкие, а значит, гибкие устройства, особенно подходящие для носимых устройств и мобильного мира. В отличие от использования светодиодов в качестве подсветки ЖК-дисплея, OLED образуют активную матрицу самого дисплея!

Гибкие световые панели Luflex, LG OLED сделаны на гибкой пластиковой основе, которая позволяет им изгибаться и скручиваться. Разнообразие форм и размеров этих гибких панелей дает дизайнерам, архитекторам и художникам возможность создавать из них проекты, которые раньше были невозможны:

На сегодняшний день все еще нет эффекта масштаба, способного сделать эту технологию экономически конкурентоспособной, но исследования продвинулись вперед и были разработаны многочисленные производственные процессы (AMOLED, PHOLED, PLED, SM-OLED, SOLED, TOLED).

Читайте также: