Принцип действия и устройство автотрансформаторов: отличия от обычных трансформаторов, сфера применения

Обновлено: 18.04.2024

С развитием энергетики и связанных с ней электрических сетей для передачи переменного тока, как источника питания для различных устройств, возникла необходимость в приборах, изменяющих величину напряжения. Такими универсальными электромагнитными устройствами, позволяющими повышать или понижать исходное напряжение до требуемой величины, стали трансформаторы.

Со временем, для обеспечения стабильной работы электроприборов, преимущественно бытового назначения, возникла необходимость плавного регулирования напряжения. Это стало возможным после того, как был изобретён автотрансформатор - устройство, в котором вторичная обмотка является составной частью первичных витков.

Что такое автотрансформатор?

Из школьного курса физики известно, что простейший трансформатор состоит из двух катушек, намотанных на железные сердечники. Магнитным полем переменного тока, запитанного через выводы первичных обмоток, возбуждаются электромагнитные колебания во второй катушке, с аналогичной частотой.

При подключении нагрузки, к выводам рабочей обмотки, она образует вторичную цепь, в которой возникает электрический ток. При этом напряжение в образованной электрической цепи связано прямо пропорциональной зависимостью с количеством витков обмоток. То есть: U1/U2 = w1/w2 , где U1, U2 - напряжения, а w1, w2 - количество полных витков в соответствующих катушках.

Схема обычного трансформатора и автотрансформатора

Рисунок 1. Схема обычного трансформатора и автотрансформатора

Немного по-другому устроен автотрансформатор. Он, по сути, состоит из одной обмотки, от которой сделано один или несколько отводов, образующих вторичные витки. При этом все обмотки образуют между собой не только электрическую, но и магнитную связь. Поэтому, при подаче электрической энергии на вход автотрансформатора, возникает магнитный поток, под действием которого происходит индукция ЭДС в обмотке нагрузки. Величина электродвижущей силы связана прямой пропорциональностью с числом витков, образующих нагрузочную обмотку, с которой снимается напряжение.

Таким образом, формула, приведённая выше, справедлива и для автотрансформатора.

Из основной обмотки можно отводить большое количество выводов, что позволяет создавать комбинации для снятия различных по величине напряжений. Это очень удобно на практике, так как понижение напряжения часто требуется для питания нескольких блоков электроприборов, использующих различные напряжения.

Отличие автотрансформатора от обычного трансформатора

Как видно из описания автотрансформатора, главное его отличие от обычного трансформатора - отсутствие второй катушки с сердечником. Роль вторичных обмоток выполняют отдельные группы витков, имеющих гальваническую связь. Эти группы не требуют отдельной электрической изоляции.

У такого устройства есть определённые преимущества:

  • сокращён расход цветных металлов, используемых на изготовление такого оборудования;
  • передача энергии осуществляется путём воздействия электромагнитного поля входного тока, и благодаря электрической связи между обмотками. Следовательно, потеря энергии оказывается ниже, поэтому у автотрансформаторов наблюдаются более высокие КПД;
  • малый вес и компактные габариты.

Несмотря на конструкционные различия, принцип работы этих двух типов изделий остаётся неизменным. Выбор типа трансформатора зависит, прежде всего, от целей и задач, которые приходится решать в электротехнике.

Типы автотрансформаторов

В зависимости от того в каких сетях (однофазных или трёхфазных) требуется изменить напряжение, используют соответствующий тип автотрансформаторов. Они бывают однофазными либо трёхфазными. Для трансформации тока с трёх фаз можно установить три автотрансформатора, предназначенных для работы в однофазных сетях, соединив их выводы треугольником или звёздочкой.

Схема соединений обмоток трансформатора

Схема соединений обмоток трансформатора

Существуют типы лабораторных автотрансформаторов, позволяющих плавно изменять значения по выходному напряжению. Такой эффект достигается путём перемещения ползунка по поверхности открытой части однослойной обмотки, наподобие принципа работы реостата. Витки проволоки наносятся вокруг кольцеобразного ферромагнитного сердечника, по окружности которого и перемещается контактный ползунок.

Автотрансформаторы подобного типа массово применялись на просторах СССР в эпоху массового распространения ламповых телевизоров. Тогда напряжение сетей было нестабильно, что вызывало искажения изображений. Пользователям этой несовершенной техники приходилось время от времени подстраивать напряжение до уровня 220 В.

До появления стабилизаторов напряжения, единственной возможностью достичь оптимальных параметров питания для бытовой техники того времени, было применение ЛАТР. Данный тип автотрансформаторов используется и сегодня в различных лабораториях и учебных заведениях. С их помощью осуществляется наладка электротехнического оборудования, тестируется аппаратура с высокой чувствительностью и выполняются другие задачи.

В специальном оборудовании, где нагрузки незначительны, применяются модели автотрансформаторов ДАТР.

Автотрансформатор ЛАТР

Автотрансформатор ЛАТР

Существуют также автотрансформаторы:

  • малой мощности, для работы в цепях до 1 кВ;
  • среднемощные агрегаты (больше 1 кВ);
  • высоковольтные автотрансформаторы.

Следует заметить, что с целью безопасности ограничено использование автотрансформаторов в качестве силовых трансформаторов, для снижения до 380 В напряжений, превышающих 6 кВ. Это связано с наличием гальванической связи между обмотками, что не безопасно для конечного потребителя. При авариях не исключено, что высокое напряжение попадёт на запитанное оборудование, что чревато непредсказуемыми последствиями. В этом кроется основной недостаток автотрансформаторов.

Обозначение на схемах

Отличить автотрансформатор на схеме от изображения обычного трансформатора очень легко. Признаком является наличие единственной обмотки связанной с одним сердечником, обозначенным жирной линией на схемах. По одну или по обе стороны этой лини схематически изображены обмотки, но в автотрансформаторе все они соединены друг с другом. Если на схеме витки изображены автономно, то речь идёт об обычном трансформаторе (см. рисунок 1).

Устройство и конструктивные особенности

Как было отмечено выше, автотрансформатор состоит из одной катушки. Её наматывают на обычный или на тороидальный сердечник.

Тороидальный трансформатор

Тороидальный трансформатор

В силу конструктивных особенностей у него отсутствуют гальванические развязки между цепями, что может привести к поражению высоковольтным током. Поэтому понижающий автотрансформатор, ввиду его повышенной опасности, требует принятия дополнительных мер по защите от поражения электротоком. Работа с ним допускается при условии строгого соблюдения правил безопасности.

Принцип действия автотрансформатора

Несмотря на особенности строения обмоточной части агрегата, его принцип действия очень напоминает работу обычного трансформатора. По такому же принципу во время циркуляции переменного тока возникает магнитный поток в сердечнике. Его действие на обмотку характеризуется появлением на каждом отдельном витке равновеликой электродвижущей силы. Суммарная ЭДС на отрезке обмотки равна сумме величин токов всех отдельно взятых витков.

Особенностью является то, что по обмотке циркулирует ещё и первичный ток, который оказывается в противофазе к индукционному потоку. Результирующие значения этих токов на участке обмотки, предназначенной для потребителя, получаются меньшими (для понижающего тр.) чем параметры поступающего электричества.

Схема понижающего автотрансформатора

Схема понижающего автотрансформатора

Соотношение величин ЭДС выражается формулой: E1/E2 = w1/w2 = k , где E - ЭДС, w - количество витков, k - коэффициент трансформации.

Учитывая то, что падение напряжений в обмотках трансформатора невелико - его можно не учитывать. В таком случае равенства: U1 = E1; U2 = E2 можно считать справедливыми. Таким образом, приведённая выше формула приобретает вид: U1/U2 = w1/w2 = k, то есть, соотношение напряжений к числу витков такое же, как и для обычного трансформатора.

Не вдаваясь в подробности, заметим, что отношение силы тока верхней катушки к току нагрузки, как и для обычного трансформатора, выражается формулой: I1/I2 = w2/w1 = 1/k. Отсюда следует, что поскольку в понижающем трансформаторе w2 < w1, то I2 < I1. Другими словами ток на выходе значительно меньше величины входящего тока. Таким образом, расходуется меньше энергии на нагревание проволоки, что позволяет использовать провода меньшего сечения.

Примечательно, что мощность нагрузки образуют токи электромагнитной индукции и электрической составляющей. Электрическая мощность ( P = U2*I1 ) довольно ощутима, в сравнении с индукционной составляющей, поступающей во вторичную цепь. Поэтому, чтобы получить требуемую мощность, используются меньшие значения сечений для магнитопроводов.

Области применения

Автотрансформаторы по сей день занимают прочные позиции в различных областях, связанных с электротехникой. Без них не обходятся:

  • различные выпрямители;
  • радиотехнические устройства;
  • телефонные аппараты;
  • сварочные аппараты;
  • системы электрификации железных дорог и многие другие устройства.

Трёхфазные автотрансформаторы используют в высоковольтных электросетях. Их применение повышает КПД энергосистем, что сказывается на снижении затрат, связанных с передачей электроэнергии.

Преимущества и недостатки

К описанным выше преимуществам можно добавить низкую стоимость изделий, за счёт снижения затрат на применяемые цветные металлы, расходов на трансформаторную сталь. Для автотрансформаторов характерны незначительные потери энергии токов, циркулирующих по обмоткам и сердечникам, что позволяет достигать уровня коэффициента полезного действия до 99%.

К недостаткам следует добавить необходимость оборудования глухого заземления нейтрали. В связи с существующей вероятностью по короткому замыканию и возможностью передачи высокого напряжения по сети, для автотрансформаторов существуют определённые ограничения к применению.

Из-за гальванической связи обмоток, возникает опасность перехода между ними атмосферных перенапряжений. Однако, несмотря на недостатки, автотрансформаторы по-прежнему находят широкое применение в самых различных областях.

Трансформаторы применяются всюду - от электростанций и подстанций, рассчитанных на десятки и сотни тысяч вольт, до питания малой бытовой техники. Хотя в последнее время используются блоки питания, но и их основой является генератор и трансформатор на ферритовом сердечнике.

Разобранный стабилизатор

Автотрансформаторы используются в бытовых стабилизаторах сетевого напряжения. Часто ЛАТРы используют в лабораториях при тестировании или ремонте электронных устройств. Тем не менее они нашли своё применение и в высоковольтных сетях, а также для электрификации железных дорог.

Схема электрификации железной дороги

Например, на ЖД используются такие изделия в сетях 2х25 (два по 25 киловольт). Как на схеме выше в малонаселенных районах прокладывается линия 50 кВ, а к электропоезду по контактному проводу подаётся 25 кВ от понижающего автотрансформатора. Таким образом уменьшается число тяговых подстанций и потери в линии.

Теперь вы знаете, в чем принципиальное отличие трансформатора от автотрансформатора. Для закрепления материала рекомендуем просмотреть полезное видео по теме:

Автотрансформаторы устройство и принцип действия

Для корректировки и изменения показателей напряжения в пределах маленьких значений используются автотрансформаторы. Устройство и принцип действия этих приборов основана на магнитной и гальванической связи между цепями, так как обмотка напряжения низшего входит в обмотку напряжения высшего. В зависимости от того, какая из них включается, происходит незначительное понижение или повышение напряжения.

Устройство и технические характеристики

Сфера применения автотрансформаторов — питание бытовой техники, промышленные электросети, пуск асинхронных электродвигателей. На крупных производственных объектах они необходимы для повышения напряжения и одновременного уменьшения возможных потерь в линиях электропередач. Благодаря особенностям конструкции, оборудование составило серьезную конкуренцию обычным трансформаторам. В зависимости от назначения, устройствам присваивается буквенное наименование:


  • С — для собственных нужд отдельных электрических станций.
  • П — для электролиний с постоянным током.
  • М — для металлургических предприятий.
  • ПН — для подключения электронасосов погружного типа.
  • Б — для буровых установок и бетоногрейных установок.
  • Э — для экскаваторов с электрооборудованием.
  • ТО — для организации временного освещения или тепловой обработки грунта или бетона.

В преобразователях электромагнитного типа передача энергии между обмотками происходит благодаря возникновению магнитного поля, сосредоточенного внутри магнитопровода. Отличие автотрансформатора от трансформатора заключается в наличии еще и электрической связи. В момент установки уменьшенного тока в той части обмотки, которая является общей между двумя цепями, возникает увеличение или понижение напряжения. По мнению специалистов, такое устройство позволяет сэкономить сталь, сократив ее количество для создания магнитопровода с меньшим сечением.

Большинство других деталей в конструкции практически ничем не отличается от комплектующих трансформатора. Принцип функционирования агрегата заключается в следующем: в момент создания нагрузки по обмотке перемещается электрический поток, а по проводнику — ток первичный. Происходит геометрическое сложение двух потоков, в результате чего на обмотку выдаются совсем малые показатели.

Типы агрегатов

В зависимости от схемы автотрансформатора и других особенностей конструкции выделяют несколько разновидностей оборудования. Наиболее популярными являются 8 из них, остальные встречаются реже. Каждый из них выбирается в соответствии с будущими условиями эксплуатации:

  • АТД — оборудование с устаревшей конструкцией мощностью в районе 25 Вт.
  • ВУ- 25-Б — позволяет уравнивать токи на вторичной обмотке, если используется схема дифференциальной защиты для силового трансформатора.
  • ЛАТР-1 — лабораторный автотрансформатор, который может использоваться при 127 В.
  • ЛАТР-2 — предназначен для бытовых сетей с напряжением 220 В, регулирует показатели напряжения контактом, который скользит по виткам обмотки.
  • ДАТР-1 — разработан для функционирования в условиях невысокой нагрузки.
  • РНО — предназначен для сетей с повышенной нагрузкой.
  • АТНЦ — незаменимое оборудование в сфере телеизмерений.
  • РНТ — оборудование, рассчитанное на максимально сильные нагрузки в сетях особого назначения.

Типы агрегатов

Кроме того, классификация предполагает деление агрегатов на группы с малой мощностью (не более 1 кВ), средней мощностью свыше 1 кВ и силовые приборы. Использование автотрансформаторов позволяет повысить КПД в работе энергетических систем, а также уменьшить стоимость транспортировки энергии.

Однофазные и трехфазные приборы

В разных отраслях сегодня используются трехфазные и однофазные агрегаты. Последние представлены таким типом оборудования, как ЛАТР (лабораторные автотрансформаторы, рассчитанные на низковольтные сети). В линиях с повышенным напряжением используются понижающие автотрансформаторы, например, 220/100 и 220/110, в которых вторичная обмотка является частью первичной. В конструкциях повышающего типа первичная обмотка — это часть вторичного контура.

Схема автотрансформатора однофазного типа

Схема автотрансформатора однофазного типа предполагает несколько отводов, которые ответвляются от основной катушки. Именно они и определяют понижающую или повышающую способность агрегата. В трехфазных конструкциях может быть два или три контура, а соединение обмоток напоминает по форме звезду. Они предназначены для работы нагревательных элементов в печах.

Аппараты, представленные с тремя обмотками, являются рабочими элементами высоковольтных сетей. Тип контакта предполагает соединения нулевого провода со звездой, что позволяет понизить напряжение, повысить КПД линии и уменьшить расходы на передачу энергии. Одним из недостатков является увеличение количества токов короткого замыкания.

Недостатки эксплуатации

Несмотря на то что автотрансформатор гораздо эффективнее и дешевле в эксплуатации, чем обычный трансформатор, в его использовании тоже могут возникать проблемы. Одним из серьезных недостатков является невозможность гальванической развязки обмоток.

Незначительный рассеивающийся электрический поток между обмотками может спровоцировать короткое замыкание при внезапных неисправностях и неполадках. Чтобы не спровоцировать нарушение функционирования агрегатов, вторичная и первичная обмотка должны иметь идентичные соединения.

В представленной системе затрудняется сохранение электромагнитного баланса, нормализовать который можно увеличением корпуса оборудования. При большой трансформации диапазона не получится существенная экономия энергоресурсов.

Принцип работы автотрансформатора и его конструктивные особенности не позволяют сделать систему с односторонним заземлением. При ремонте и устранении аварийных ситуаций персонал, обслуживающий оборудование, может подвергаться опасности из-за вероятности возникновения высшего напряжение и на низших обмотках. В таком случае установится соединение всех элементов с высоковольтной частью, а изоляция проводников может оказаться пробитой, что не допускается правилами безопасности.

Читайте также: