Простой стабилизатор тока: принцип работы, импульсная модель, универсальный регулируемый прибор

Обновлено: 18.05.2024

Стабилизаторы тока предназначены для стабилизации тока на нагрузке. Напряжение на нагрузке зависит от его сопротивления. Стабилизаторы необходимы для функционирования различных электронных приборов, например газоразрядные лампы.

Для качественного заряда аккумуляторов также необходимы стабилизаторы тока. Они используются в микросхемах для настройки тока каскадов преобразования и усиления. В микросхемах они играют роль генератора тока. В электрических цепях всегда есть разного рода помехи. Они отрицательно влияют на действие приборов и электрических устройств. С такой проблемой легко справляются стабилизаторы.

Виды стабилизаторов тока

Отличительной чертой стабилизаторов тока является их значительное выходное сопротивление. Это дает возможность исключить влияние напряжения на входе, и сопротивления нагрузки, на значение тока на выходе устройства. Стабилизаторы тока поддерживают выходной ток в определенных пределах, меняя при этом напряжение таким образом, что ток, протекающий по нагрузке, остается постоянным.

Стабилизаторы тока на резисторе

В элементарном случае генератором тока может быть схема, состоящая из блока питания и сопротивления. Подобная схема часто используется для подключения светодиода, выполняющего функцию индикатора.

Из недостатков такой схемы можно отметить необходимость использования высоковольтного источника. Только при таком условии можно использовать резистор, имеющий высокое сопротивление, и получить хорошую стабильность тока. На сопротивлении рассеивается мощность P = I 2 х R.

Стабилизаторы на транзисторах

Значительно лучше функционируют стабилизаторы тока, собранные на транзисторах.

Можно выполнить настройку падения напряжения таким образом, что оно будет очень маленьким. Это дает возможность снижения потерь при хорошей стабильности тока на выходе. На выходе транзистора сопротивление очень большое. Такая схема применяется для подключения светодиодов или зарядки аккумуляторных батарей малой мощности.

Напряжение на транзисторе определяется стабилитроном VD1. R2 играет роль датчика тока и обуславливает ток на выходе стабилизатора. При увеличении тока падение напряжения на этом резисторе становится больше. Напряжение поступает на эмиттер транзистора. В итоге напряжение на переходе база-эмиттер, которое равно разности напряжения базы и эмиттерного напряжения, снижается, и ток возвращается к заданной величине.

Схема токового зеркала

Аналогично функционируют генераторы тока. Популярной схемой таких генераторов является «токовое зеркало», в которой вместо стабилитрона применяется биполярный транзистор, а точнее, эмиттерный переход. Вместо сопротивления R2 применяется сопротивление эмиттера.

Стабилизаторы тока на полевике

Схема с применением полевых транзисторов более простая.

Нагрузочный ток проходит через R1. Ток в цепи: «+» источника напряжения, сток-затвор VТ1, нагрузочное сопротивление, отрицательный полюс источника - очень незначительный, так как сток-затвор имеет смещение в обратную сторону.

Напряжение на R1 положительное: слева «-», справа напряжение равно напряжению правого плеча сопротивления. Поэтому напряжение затвора относительно истока минусовое. При снижении нагрузочного сопротивления, ток повышается. Поэтому напряжение затвора по сравнению с истоком имеет еще большую разницу. Вследствие этого транзистор закрывается сильнее.

При большем закрытии транзистора нагрузочный ток снизится, и возвратится к начальной величине.

Устройства на микросхеме

В прошлых схемах имеются элементы сравнения и регулировки. Аналогичная структура схемы применяется при проектировании устройств, выравнивающих напряжение. Отличие устройств, стабилизирующих ток и напряжение, заключается в том, что в цепь обратной связи сигнал приходит от датчика тока, который подключен к цепи нагрузочного тока. Поэтому для создания стабилизаторов тока используют популярные микросхемы 142 ЕН 5 или LМ 317.

Здесь роль датчика тока играет сопротивление R1, на котором стабилизатор поддерживает постоянное напряжение и нагрузочный ток. Величина сопротивления датчика значительно ниже, чем нагрузочное сопротивление. Снижение напряжения на датчике влияет на напряжение выхода стабилизатора. Подобная схема хорошо сочетается с зарядными устройствами, светодиодами.

Импульсный стабилизатор

Высокий КПД имеют импульсные стабилизаторы, выполненные на основе ключей. Они способны при незначительном напряжении входа создавать высокое напряжение на потребителе. Такая схема собрана на микросхеме МАХ 771.

Сопротивления R1 и R2 играют роль делителей напряжения на выходе микросхемы. Если напряжение на выходе микросхемы становится выше опорного значения, то микросхема снижает выходное напряжение, и наоборот.

Если схему изменить таким образом, чтобы микросхема реагировала и регулировала ток на выходе, то получится стабилизированный источник тока.

При падении напряжения на R3 ниже 1,5 В, схема работает в качестве стабилизатора напряжения. Как только нагрузочный ток повышается до определенного уровня, то на резисторе R3 падение напряжения становится больше, и схема действует как стабилизатор тока.

Сопротивление R8 подключается по схеме тогда, когда напряжение становится выше 16,5 В. Сопротивление R3 задает ток. Отрицательным моментом этой схемы можно отметить значительное падение напряжения на токоизмерительном сопротивлении R3. Эту проблему можно решить путем подключения операционного усилителя для усиления сигнала с сопротивления R3.

Устройство и принцип действия

На нестабильность нагрузочного тока влияет значение сопротивления и напряжения на входе. Пример: в котором сопротивление нагрузки постоянно, а напряжение на входе повышается. Ток нагрузки при этом также возрастает.

В результате этого повысится ток и напряжение на сопротивлениях R1 и R2. Напряжение стабилитрона станет равным сумме напряжений сопротивлений R1, R2 и на переходе VT1 база-эмиттер: Uvd1=UR1+UR2+UVT1(б/э)

Напряжение на VD1 не меняется при меняющемся входном напряжении. Вследствие этого ток на переходе база-эмиттер снизится, и повысится сопротивление между клеммами эмиттер-коллектор. Сила тока на переходе коллектор-эмиттере и нагрузочное сопротивление станет снижаться, то есть переходить к первоначальной величине. Так выполняется выравнивание тока и поддержание его на одном уровне.

Стабилизатор для светодиодов
Изготовить такое устройство самостоятельно можно с применением микросхемы LМ 317. Для этого останется только подобрать резистор. Питание для стабилизатора целесообразно применять следующее:
  • Блок от принтера на 32 В.
  • Блок от ноутбука на 19 В.
  • Любой блок питания на 12 В.

Достоинством такого устройства является низкая стоимость, простота конструкции, повышенная надежность. Сложную схему нет смысла собирать самостоятельно, проще ее приобрести.

Импульсный стабилизатор тока

Чтобы эффективно побороть различные помехи в сети, необходимо использовать простые стабилизаторы тока. Современные производители занимаются промышленным изготовлением таких устройств, благодаря чему каждая модель отличается своими функциональными и техническими характеристиками. В бытовой отрасли нет больших требований к стабилизаторам тока, но высококачественное измерительное оборудование всегда нуждается в стабильном напряжении.

Краткое описание

Опытные мастера прекрасно знают, что простейшие ограничители тока представлены в виде обычных резисторов. Такие агрегаты часто называют стабилизаторами, что не является действительностью, так как они не способны убрать все помехи при колебании напряжения на своём входе. Использование резистора в схеме питания того или иного прибора возможно только в том случае, если всё входное напряжение стабилизируется.

В иной ситуации даже мельчайшие скачки напряжения воспринимаются как повышенная нагрузка, что негативно отражается на работе всего устройства. Эффективность работы резистивных ограничителей тока является довольно низкой, так как потребляемая ими энергия рассеивается в виде тепла.

Более высоким уровнем КПД обладают те конструкции, которые изготовлены на базе готовых интегральных микросхем линейных стабилизаторов. Схемы таких устройств отличаются минимальным набором элементов, простотой настройки и отсутствием помех. Чтобы избежать нежелательного перегрева регулирующего элемента, различия между входным и выходным напряжением должны быть минимальными. В противном случае корпус микросхемы будет вынужден рассеивать всю невостребованную энергию, что в несколько раз снижает итоговый показатель КПД.

Наибольшей эффективностью обладают схемы с широтно-импульсной модуляцией. Их производство основано на использовании универсальных микросхем, где присутствует цепь обратной связи и специальные защитные механизмы, благодаря чему существенно возрастает надёжность всего устройства. Использование импульсного трансформатора ведёт к удержанию схемы, что положительно влияет на уровень КПД и продолжительность эксплуатационного срока. Стоит отметить, что такие стабилизаторы мастера часто изготавливают своими руками, используя для этого специальные детали.

Функциональные возможности


Только тот мастер, который хорошо знает принцип работы стабилизатора тока, сможет эффективно применять это устройство в различных сферах. Основная сложность в том, что электросети насыщены различными помехами, которые негативно влияют на работоспособность оборудования и приборов. Чтобы эффективно преодолеть источники отрицательного воздействия, специалисты повсюду применяют стабилизаторы напряжения и тока.

В каждом таком изделии присутствует незаменимый элемент — трансформатор, который обеспечивает стабильную и безотказную работу всей системы. Даже самая элементарная схема обязательно укомплектована универсальным выпрямительным мостом, который соединён с разными резисторами, а также конденсаторами. К главным эксплуатационным характеристикам относятся предельный уровень сопротивления и индивидуальная ёмкость.

Квалифицированные специалисты отмечают, что простой стабилизатор тока функционирует по самой элементарной схеме. Всё дело в том, что электрический ток поступает на основной трансформатор, благодаря чему меняется его предельная частота. На входе она всегда совпадает с этим показателем в электросети, находясь в пределах 50 герц. Только после того, как произошло преобразование тока, предельная частота будет снижена до оптимальной отметки.

Стоит отметить, что в традиционной схеме присутствуют мощные высоковольтные выпрямители, которые помогают определить полярность напряжения. А вот конденсаторы участвуют в качественной стабилизации тока, резисторы устраняют имеющиеся помехи.

Изготовление простого преобразователя для светодиодов

Схема импульсного стабилизатора тока

Опытные мастера согласятся, что собрать качественный и долговечный стабилизатор не так уж и сложно. Главная особенность состоит в том, что на блок может быть установлена целая система низковольтных конденсаторов на 20 вольт, а импульсная микросхема может иметь вход до 35 В. Наиболее простой светодиодный стабилизатор, выполненный своими руками — это вариант LM317. Потребуется только правильно рассчитать резистор для используемого светодиода с помощью специализированного онлайн-калькулятора.

Важным фактом остаётся то, что для слаженной работы такого агрегата отлично подходит подручное питание:

  • Стандартный блок на 19 вольт от ноутбука.
  • На 24 В.
  • Более мощный агрегат на 32 вольт от обычного принтера.
  • Либо на 9 или на 12 вольт от какой-либо бытовой электроники.

К основным преимуществам такого преобразователя всегда относят его доступность, минимальное количество элементов, высокую степень надёжности, а также наличие в магазинах. Собирать самостоятельно более сложную схему весьма нерационально. Если мастер не обладает необходимым опытом, тогда импульсный стабилизатор тока лучше купить в готовом виде. При необходимости его всегда можно усовершенствовать.

Импульсный стабилизатор тока

Продолжительность работы светодиода без потери яркости зависит от режима. Главное достоинство простейших стабилизаторов (драйверов), таких как микросхема-стабилизатор LM317, — их довольно трудно сжечь. Схема подключения LM317 требует всего двух деталей: самой микросхемы, включаемой в режим стабилизации, и резистора. Сам процесс сборки состоит из нескольких основных этапов:

  1. Потребуется купить переменный резистор сопротивлением в 0.5 кОм (имеет три вывода и ручку регулировки). Заказать его можно через интернет или купить в «Радиолюбителе».
  2. Провода припаиваются к среднему выводу, а также к одному из крайних.
  3. С помощью мультиметра, включённого в режиме измерения сопротивления, замеряется сопротивление резистора. Нужно добиться максимального показания в 500 Ом (чтобы светодиод не перегорел при низком сопротивлении резистора).
  4. После внимательной проверки правильности соединений перед подключением собирается цепь.

Для любого устройства можно добиться подачи 10 А (задаётся низкоомным сопротивлением). Для этих целей можно использовать транзистор КТ825 или установить аналог с лучшими техническими характеристиками и системой охлаждения. Максимальная мощность LM317 — 1.5 ампер. Если есть необходимость увеличить ток, то в схему можно добавить полевой или обычный транзистор.

Универсальная регулируемая модель

Устройство стабилизатора тока

Многие мастера сталкиваются с необходимостью использования высококачественного стабилизатора, который позволил бы проводить настройки сети в широком диапазоне. Некоторые современные схемы отличаются тем, что в них предусмотрено наличие токозадающего резистора с пониженными характеристиками. Сами специалисты отмечают, что такое устройство позволяет проводить усиление напряжения в другом резисторе. Это состояние принято называть усиленным напряжением ошибки.

Параметры опорного и ошибочного напряжения можно сравнить при помощи опорного усилителя, благодаря этому мастер осуществляет настройку состояния полевого транзистора. Стоит отметить, что такая схема требует дополнительного питания, которое обязательно должно поступать к отдельному разъёму. Всё дело в том, что питающее напряжение должно обеспечивать слаженную работу абсолютно всех компонентов используемой схемы. Допустимый уровень не должен быть превышен, так как это чревато преждевременной поломкой оборудования.

Чтобы максимально правильно настроить работу регулируемого стабилизатора тока, необходимо использовать специальный ползунок. Именно подстроечный резистор позволяет мастеру выставить максимальное значение тока. Настройка сети получается более гибкой, так как все параметры можно самостоятельно корректировать в зависимости от интенсивности эксплуатации.

Многофункциональный прибор

Среднюю сложность изготовления имеют драйверы для светодиодов на 220 В. Много времени может занять их настройка, требующая опыта по наладке. Такой драйвер извлечь можно из светодиодных ламп, прожекторов и светильников с неисправной светодиодной цепью. Большинство из них также возможно доработать, узнав модель контроллера преобразователя. Параметры обычно задаются одним или несколькими резисторами.

В datasheet указывается уровень сопротивления, необходимый для получения нужного тока. Если установить регулируемый резистор, то количество Ампер будет настраиваемым (но без превышения указанной номинальной мощности).

Как самим собрать стабилизатор

Ещё недавно высокой популярностью пользовался универсальный модуль XL4015. По своим характеристикам он подходит для подключения светодиодов с высокой мощностью (до 100 Ватт). Стандартный вариант его корпуса припаян к плате, выполняющей функции радиатора. Чтобы улучшить охлаждение XL4015, схема должна быть доработана с установкой радиатора на коробку устройства.

Многие пользователи просто ставят его сверху, однако, эффективность такой установки довольно низкая. Систему охлаждения желательно располагать внизу платы, напротив пайки микросхемы. Для оптимального качества её можно отпаять и установить на полноценный радиатор, используя термопасту. Провода потребуется удлинить. Дополнительное охлаждение можно монтировать и для диодов, что значительно повысит эффективность работы всей схемы.

Среди драйверов наиболее универсальным считается регулируемый. Обязательно устанавливается переменный резистор, который задаёт количество ампер. Эти характеристики обычно указываются в следующих документах:

  • В сопроводительной документации к микросхеме.
  • В datasheet.
  • В стандартной схеме включения.

Без добавочного охлаждения микросхемы такие устройства выдерживают 1—3 А (в соответствии с моделью контроллера широтно-импульсной модуляции). Главный недостаток этих драйверов — чрезмерный нагрев диода и дросселя. Выше 3 А потребуется охлаждение мощного диода и контроллера. Дроссель заменяют более подходящим либо перематывают толстым проводом.

Незаменимое устройство постоянного тока

Простое устройство стабилизатора тока

Даже начинающий мастер знает, что такой агрегат работает по принципу двойного интегрирования. Абсолютно во всех моделях за этот процесс отвечают преобразователи. Универсальные двухканальные транзисторы предназначены для увеличения существующих динамических характеристик. Важно помнить, что для устранения тепловых потерь нужно использовать конденсаторы с большой ёмкостью.

Сделать показатель выпрямления можно только благодаря точному расчёту необходимого значения. Как показывает практика, если при выходном напряжении постоянного тока получается 12 ампер, то предельное значение должно составлять 5 В. Устройство сможет стабильно поддерживать рабочую частоту на отметке 30 Гц. Относительно порогового напряжения — всё зависит от блокировки сигнала, который поступает от трансформатора. Но фронт импульсов не должен превышать 2 МКС.

Только качественное преобразование тока позволяет обеспечить слаженную работу главных транзисторов. В этой схеме допускается использование исключительно полупроводниковых диодов. Если резисторы балластные, то это чревато большими тепловыми потерями. Именно поэтому коэффициент рассевания существенно увеличивается. Мастер может увидеть, что амплитуда колебаний возросла, а процесс индуктивности не произошёл.

Современная схема на базе КРЕН

Схема работы стабилизатора тока

Такое устройство будет стабильно работать только с элементами LM317 и КР142ЕН12. Это связано с тем, что они выступают в качестве универсальных стабилизаторов напряжения, хорошо справляясь с током до 1.5 А и выходным напряжением до 40 вольт. В классическом тепловом режиме эти элементы способны качественно рассеивать мощность до 10 Ватт. Сами микросхемы отличаются низким собственным потреблением, так как этот показатель составляет всего 8 мА. Главное, что этот показатель остаётся неизменным даже в том случае, если напряжение колеблется.

Отдельного внимания заслуживает микросхема LM317, которая способна удерживать постоянное напряжение на основном резисторе. Этот агрегат с неизменным сопротивлением обеспечивает максимальную стабильность проходящего через него тока, благодаря чему его часто называют токозадающим резистором. Современные стабилизаторы на КРЕН отличаются от своих аналогов относительной простотой, за счёт чего активно эксплуатируются в качестве зарядки для аккумуляторов и для электронной нагрузки.

Представляем радиоэлемент нового поколения — компактный регулятор тока для светодиодов от OnSemi NSI45020AT1G. Его важное преимущество — он двухвыводной и миниатюрный, создан специально для управления маломощными светодиодами. Устройство выполнено в SMD корпусе SOD-123 и обеспечивает стабильный ток 20 мА в цепи, не требуя дополнительных внешних компонентов. Такое простое и надежное устройство позволяет создавать недорогие решения для управления светодиодами. Внутри него находится схема из полевого транзистора и нескольких деталей обвязки, естественно с сопутствующими радиоэлементами защиты. Что-то типа такого LED драйвера.

Регулятор включается последовательно в цепь светодиодов, работает с максимальным рабочим напряжением 45 В, обеспечивает ток в цепи 20 мА с точностью ±10%, имеет встроенную ESD защиту, защиту от переполюсовки. При повышении температуры регулятора, выходной ток будет снижаться. Падение напряжения 0,5 В, а напряжение включения — 7,5 В.

Назначение и принцип работы

Стабилизаторы должны обеспечивать постоянный рабочий ток светодиодов когда в сети питания есть проблемы с отклонением напряжения от нормы (вам будет интересно узнать, как подключить светодиод от сети 220 вольт). Стабильный рабочий ток в первую очередь необходим для защиты LED от перегрева. Ведь при превышении максимально допустимого тока, светодиоды выходят из строя. Также стабильность рабочего тока обеспечивает постоянство светового потока прибора, например, при разряде аккумуляторных батарей или колебаниях напряжения в питающей сети.

Стабилизаторы тока для светодиодов имеют разные виды исполнения, а обилие вариантов схем исполнения радует глаз. На рисунке приведены три самые популярные схемы стабилизаторов на полупроводниках.

схемы стабилизаторов тока для светодиодов

  1. Схема а) — Параметрический стабилизатор. В этой схеме стабилитрон задает постоянное напряжение на базе транзистора, который включен по схеме эмиттерного повторителя. Благодаря стабильности напряжения на базе транзистора, напряжение на резисторе R тоже постоянно. В силу закона Ома ток на резисторе также не меняется. Так как ток резистора равен току эмиттера, то стабильны токи эмиттера и коллектора транзистора. Включая нагрузку в цепь коллектора, мы получим стабилизированный ток.
  2. Схема б). В схеме, напряжение на резисторе R стабилизируется следующим образом. При увеличении падения напряжения на R, больше открывается первый транзистор. Это приводит к уменьшению тока базы второго транзистора. Второй транзистор немного закрывается и напряжение на R стабилизируется.
  3. Схема в). В третьей схеме ток стабилизации определяется начальным током полевого транзистора. Он не зависит от напряжения, приложенного между стоком и истоком.

В схемах а) и б) ток стабилизации определяется номиналом резистора R. Применяя вместо постоянного резистора подстрочный можно регулировать выходной ток стабилизаторов.

Производители электронных компонентов производят множество микросхем стабилизаторов для светодиодов. Поэтому в настоящее время в промышленных изделиях и в радиолюбительских конструкциях чаще применяются стабилизаторы в интегральном исполнении.

Параметры питания светодиодов

У светодиодов, кроме номинального тока существует ещё один важный параметр - прямое падение напряжения. Роль этого параметра также существенна, именно поэтому его указывают в первом ряду технических параметров полупроводникового прибора.

Чтобы через p-n переход начал протекать ток, к нему нужно приложить какое-то минимальное прямое напряжение Uмин.пр.. Значение минимального прямого напряжения указывается в документации светодиода и отражается на графике вольт — амперных характеристик (ВАХ).

На зеленом участке ВАХ светодиода видно, что только при достижении Uмин.пр. начинает протекать ток Iпр. Дальнейший незначительный рост Uпр приводит к резкому росту Iпр. Именно поэтому даже небольшие перепады напряжения свыше Uмакс..пр. губительны для кристалла светодиода. В момент превышения Uмакс.пр. ток достигает своего пика и происходит разрушение кристалла. Для каждого типа светодиодов существует номинальный ток и соответствующее ему напряжение (паспортные данные), при которых прибор должен отработать заявленный срок службы.

Обзор известных моделей

Большинство микросхем для питания светодиодов выполнены в виде импульсных преобразователей напряжения. Преобразователи, в которых роль накопителя электрической энергии выполняет катушка индуктивности (дроссель) называются бустерами. В бустерах преобразование напряжения происходит за счет явления самоиндукции. Одна из типичных схем бустера приведена на рисунке.

Схема стабилизатора тока работает следующим образом. Транзисторный ключ находящийся внутри микросхемы периодически замыкает дроссель на общий провод. В момент размыкания ключа в дросселе возникает ЭДС самоиндукции, которая выпрямляется диодом. Характерно то, что ЭДС самоиндукции может значительно превышать напряжение источника питания.

Как видно из схемы для изготовления бустера на TPS61160 производства фирмы Texas Instruments требуется совсем немного компонентов. Главными навесными деталями являются дроссель L1, диод Шоттки D1, выпрямляющий импульсное напряжение на выходе преобразователя, и Rset.

Резистор выполняет две функции. Во-первых, резистор ограничивает ток, протекающий через светодиоды, а во-вторых, резистор служит элементом обратной связи (своего рода датчиком). С него снимается измерительное напряжение, и внутренние схемы чипа стабилизируют ток, протекающий через LED, на заданном уровне. Изменяя номинал резистора можно изменять ток светодиодов.

Преобразователь на TPS61160 работает на частоте 1.2 МГц, максимальный выходной ток может составлять 1.2 А. С помощью микросхемы можно питать до десяти светодиодов включенных последовательно. Яркость светодиодов можно изменять путем подачи на вход «контроль яркости» сигнала ШИМ переменной скважности. КПД приведенной схемы составляет около 80%.

Нужно заметить, что бустеры обычно используются, когда напряжение на светодиодах выше напряжения источника питания. В случаях, когда требуется понизить напряжение, чаще применяют линейные стабилизаторы. Целую линейку таких стабилизаторов MAX16xxx предлагает фирма MAXIM. Типовая схема включения и внутренняя структура подобных микросхем представлена на рисунке.

Как видно из структурной схемы, стабилизация тока светодиодов осуществляется Р-канальным полевым транзистором. Напряжение ошибки снимается с резистора Rsensи подается на схему управления полевиком. Так как полевой транзистор работает в линейном режиме, КПД подобных схем заметно ниже, чем у схем импульсных преобразователей.

Микросхемы линейки MAX16xxx часто применяются в автомобильных приложениях. Максимальное входное напряжение чипов составляет 40 В, выходной ток - 350 мА. Они, как и импульсные стабилизаторы, допускают ШИМ-диммирование.

Стабилизатор напряжения отрицательной полярности

Понятно, что для отрицательной полярности напряжения схема должна претерпеть изменения, так как для микросхемы TL431 нет комплементарного аналога.

Тем не менее, я так же использовал TL431, но в связке с составным транзистором (Дарлингтон):

Этот стабилизатор обычно используется для питания вспомогательных цепей, к примеру, катодных источников стабильного тока. Потому образцовые параметры здесь не нужны и усложнять схему я не стал.

Стабилизатор на LM317

В качестве стабилизатора тока для светодиодов можно использовать не только специализированные микросхемы. Большой популярностью у радиолюбителей пользуется схема LM317.

LM317 представляет собой классический линейный стабилизатор напряжения имеющий множество аналогов. В нашей стране эта микросхема известна как КР142ЕН12А. Типовая схема включения LM317 в качестве стабилизатора напряжения показана на рисунке.

Для превращения этой схемы в стабилизатор тока достаточно исключить из схемы резистор R1. Включение LM317 в качестве линейного стабилизатора тока выглядит следующим образом.

Выполнить расчет этого стабилизатора довольно просто. Достаточно вычислить номинал резистора R1, подставив значение тока в следующую формулу:

Мощность, рассеиваемая на резисторе равна:

Высоковольтный стабилизатор напряжения

Так как максимальное выходное напряжение микросхемы TL431 составляет всего 30В, то для получения больших значений выходного напряжения стабилизатора используется полевой транзистор, включенный как умножитель. Его коэффициент усиления равен отношению суммы резисторов 330кОм и 270 кОм к резистору в 33кОм. При указанных номиналах усиление равно 15, т.е. максимальное выходное напряжение схемы составляет порядка 450В.

Источник тока на транзисторах MJE350 питает источник образцового напряжения током в 5мА, значение которого устанавливается резистором 150R. В остальном работа схемы аналогична предыдущей.

Следует обратить внимание на качество конденсаторов. Они должны быть низкоимпедансными и быстрыми. К примеру, плёночные конденсаторы фирмы WIMA типа FKP1 отвечают всем этим требованиям.

Кстати, так как схема не обеспечивает плавную подачу анодного напряжения (или задержку включения) до прогрева ламп, для решения это проблемы можно использовать модуль, описанный здесь.

Как сделать стабилизатор для светодиода своими руками

Во всех приведенных схемах стабилизаторов используется минимальное количество деталей. Поэтому самостоятельно собрать подобные конструкции сможет даже начинающий радиолюбитель освоивший навыки работы с паяльником. Особенно просты конструкции на LM317. Для их изготовления даже не нужно разрабатывать печатную плату. Достаточно припаять подходящий резистор между опорным выводом микросхемы и ее выходом.

Также к входу и выходу микросхемы нужно припаять два гибких проводника и конструкция будет готова. В случае, если с помощью стабилизатора тока на LM317 предполагается питать мощный светодиод, микросхему нужно оснастить радиатором который обеспечит отвод тепла. В качестве радиатора можно использовать небольшую алюминиевую пластинку площадью 15-20 квадратных сантиметров.

Изготавливая конструкции бустеров, в качестве дросселей можно использовать катушки фильтров различных блоков питания. Например, для этих целей хорошо подойдут ферритовые кольца от блоков питания компьютеров, на которые следует намотать несколько десятков витков эмалированного провода диаметром 0.3 мм.

Какой стабилизатор использовать в авто

Сейчас автолюбители часто занимаются модернизацией светотехники своих машин, применяя для этих целей светодиоды или светодиодные ленты . Известно, что напряжение бортовой сети автомобиля может сильно меняться в зависимости от режима работы двигателя и генератора. Поэтому в случае с авто особенно важно применять не стабилизатор 12 вольт, а рассчитанный на конкретный тип светодиодов.

Для автомобиля можно посоветовать конструкции на основе LM317. Также можно использовать одну из модификаций линейного стабилизатора на двух транзисторах, в которой в качестве силового элемента использован мощный N-канальный полевой транзистор. Ниже приведены варианты подобных схем, в том числе и схема светодиодного драйвера.

Чистый вход

Я хотел получить чистое входное напряжение по максимуму очистив его от гармоник и исключив все переходные процессы. Дело в том, что все стабилизаторы имеют некоторую ёмкость между входом и выходом. Плюс помехи могут проникнуть на выход стабилизатора через цепи обратной связи или общий провод. Потому на входе стабилизатора нам требуется иметь максимально чистый сигнал.

Звучит немного утопически? Как получить «чистое» напряжение на входе стабилизатора? RC или LC-фильтры могут значительно снизить гармоники в выпрямленном напряжении. А какой сигнал считать достаточно чистым?

Довольно популярны в ламповых усилителях выпрямители на кенотронах, которые в силу своих конструктивных особенностей являются несимметричными, однако же ничего…звучат эти усилители!

Читайте также: