Сети с изолированной нейтралью: разновидности устройства, принцип действия, преимущества и недостатки

Обновлено: 06.05.2024

Электрические сети — это сложные системы. Схемы подключения генераторов и трансформаторов предполагает подключение глухозаземленной и изолированной нетрали. В нашей энергосистеме в основном используется система с глухозаземленной нетралью. Однако, существует оборудование, которое должно работать в условиях где применяется трехпроводная сеть с изолированной нейтралью.

Это передвижные установки, оборудование торфоразработок, при добыче калийных удобрений и угольных шахтах, то есть оборудование, работающее на напряжение 380-660 В и 3-35 Кв. Питающий кабель передвижных установок выполняется четырехпроводным кабелем. Отличие одного вида заземления от другого заключается в том, что общая точка вторичной обмотки трансформатора подключается непосредственно в трансформаторной подстанции к заземлителю.

Такая система с изолированной нейтралью получается при подключении вторичных обмоток трансформатора треугольником. В этом случае средней точки просто не существует. Это используется, когда по условия безопасности не допускают аварийное обесточивание при коротком замыкании на землю. Такие системы получили обозначение IT.

Что является определением изолированной нейтрали

В правилах эксплуатации электроустановок (ПЭУ)существует определение, что собой представляет схема с изолированной нейтралью. Рассмотрим, чем называют IT схемой. Это система, в которой нулевой провод генератора или трансформатора не подключается к заземлителю. Он может быть подключен к контуру заземления путем соединения приборов сигнализации, средств измерения, защиты или аналогичных приборов к нулю. Все эти устройства должны обладать большим сопротивлением.

Схема с изолированной нейтралью

Систему с изолированной нейтралью можно представить трехфазной сетью, обмотка трансформатора, в которой соединена треугольником, но может быть и звездой. А от линии отходят резисторы, подключенные к заземлению и параллельно сопротивлению стоят конденсаторы. Через которые в кабельной или воздушной линии протекают токи утечки, их можно представить двумя составляющими. Одна из которых активная, а вторая реактивная.

Так как сопротивление не поврежденной изоляции имеет величину около мегаома. При таком сопротивлении ток утечки очень маленький и рассчитывается по закону Ома. I=U/R, а при величине сопротивления 0,5 Мом и напряжении 220 В, составляет 0,44 Ма. Реактивную составляющую представляют в виде конденсатора. Одной обкладкой служит провод линии, а второй земля.

Когда имеется исправная трехфазная сети с изолированной нейтралью нагрузка между фазами распределяется равномерно. При возникновении пробоя одной фазы на землю, т. е. возникают однофазные замыкания на землю в сетях с изолированной нейтралью.

В этом случае возникает аварийный ток однофазного замыкания. Чаще всего замыкание происходит на корпус электрического потребителя. В качестве последнего могут выступать электродвигатели или металлические конструкции.

Если они не заземлены, то на корпусе прибора возникает фазное напряжение или близкое к нему. Прикосновение человека к корпусу будет равносильно прикосновению к фазе. Что смертельно опасно.
Когда возникает однофазное КЗ в сети с изолированной нейтралью, ток замыкания небольшой, его значение составляет миллиамперы. При таких токах невозможно установить защитные устройства.

Поэтому для обеспечения отключения используются приборы, которые автоматически контролируют состояние изоляции. Такие системы устанавливают, когда необходима защита от замыкания на землю в сетях с изолированной нейтралью.

Достоинства

Какие же существуют достоинства и недостатки сети с изолированной нейтралью? К основным достоинствам следует отнести то, что нет необходимости оперативного отключения питающего напряжения при возникновении короткого замыкания одной фазы на землю.

Недостатки

Это считается аварийным режимом, и он не предполагает длительной работы оборудования. Такой режим имеет следующие недостатки:

  • Обнаружить неисправный участок довольно непросто;
  • Изоляция электроприборов должна быть рассчитана на пробой от линейного напряжения;
  • При продолжительном замыкании увеличивается вероятность поражения обслуживающего персонала электричеством;
  • Вследствие постоянного воздействия дуговых перенапряжений и постоянного накопления дефектов, снижается срок службы изоляции;
  • Из-за появления дуговых перенапряжений возникают повреждения изоляции в разных местах;
  • Однофазное замыкание на землю в сетях с изолированной нейтралью затрудняет работу релейной защиты;
  • Возможное появление дуги малых токов в месте однофазного замыкания на землю.

Большое количество недостатков существенно снижает применение такой схемы в сетях до 1 000 В. Более широкое распространение такая система получила в высоковольтных сетях.

Что такое и чем отличается изолированная нейтраль в сетях с напряжением выше 1 000В

В сетях среднего напряжения (6 — 10 КВ) изолированная нейтраль трансформатора отсутствует, так как обмотки трансформатора соединены треугольником. При соединении обмоток звездой появляется возможность в организации защиты компенсации тока однофазного замыкания на землю в высоковольтной сети с изолированной нейтралью.

Для компенсации реактивных токов короткого замыкания применяют дугогасящие реакторы в случае:

  1. Линии напряжением 3-6 КВ и током свыше 30А;
  2. Напряжение сети 10 КВ и ток больше 10А;
  3. Ток, превышающий 15 А и напряжения 15-20 КВ;
  4. Воздушная линия электропередач напряжением 3 - 20 КВ и током, превышающим 10 А;
  5. Кабельные и ЛЭП напряжением 35 КВ;
  6. При напряжении на генераторе 6-20 КВ и токе на землю 5А в схеме «генератор - трансформатор».

Трехпроводная трехфазная система с изолированной нейтралью допускает производить корректировку тока КЗ, что осуществляется подключением нейтрали к заземлению при помощи высокоомного сопротивления.


В настоящее время для безопасного энергообеспечения электрооборудования в основном используют глухое заземление. В то же время существуют устройства, которые эксплуатируются в трехпроводной сети с изолированной нейтралью. Сюда можно отнести передвижное оборудование, устройства для торфоразработок и другие механизмы, которые работают в сетях 380−660 В. Кроме того, такой вид защиты применяется в электрических магистралях напряжением от 2 до 35 кВ.

Режимы работы нейтралей

Нейтраль электрооборудования представляет собой общую точку обмотки генератора или трансформатора, которая соединена звездой. Оттого, как связана нейтраль с землей, зависит уровень изоляции электрооборудования.

Кроме того, такая связь определяет выбор коммутационных устройств, значение перенапряжения и методы их устранений, величину токов при замыкании на землю одной фазы и т. д. От того, в каком режиме находится нейтраль, известны схемы четырех типов:

В настоящее время первые два вида используются в электрических сетях с напряжением от 3 до 35 кВ. Эффективное заземление чаще всего встречается в электроснабжении с напряжением выше 1 кВ и коэффициентом замыкания не более 1,4. Этот показатель означает разность между потенциалами фазы и земли в нормальном состоянии и при повреждении фазы.

Группа с глухозаземленной нейтралью относится к сетям с напряжением до 1 кВ.

Описание изолированного устройства

Такое устройство защиты представляет собой систему, когда нулевой провод генератора или трансформатора не соединяют с заземлителем. Соединение с глухим заземлением допускается через аппаратуру сигнализации, защиты и устройства измерения, которые обладают большим сопротивлением.

В этом случае изолированная нейтраль представляет собой трехфазную сеть, подключенную от электрического оборудования к заземлению через резисторы.

При этом параллельно подключают систему с конденсаторами. Такая схема подключения нейтрали имеет две составляющие:

Активная схема предназначена для препятствия току утечки с помощью резисторов, которые благодаря большому сопротивлению понижают его значение до минимального. Реактивная система обладает конденсаторами, в которых одна обкладка соединяется с линией, а вторая — с землей.

Принцип действия

В исправной трехфазной сети распределение нагрузки происходит равномерно. В случае пробоя любой фазы в схеме с изолированной нейтралью возникает замыкание на землю. Обычно происходит в этом случае пробой на корпус электрического потребителя.

Это могут быть как электрические двигатели, так и металлическое оборудование. Если отсутствует заземление, то на устройствах появляется напряжение. Такая ситуация очень опасна при прикосновении человека к корпусу конструкции.

Когда же в сети стоит изолированная нейтраль, то ток снизится до минимума и станет безопасным для работника. В настоящее время такая система защиты применяется:

  1. В двухпроводных сетях постоянного тока.
  2. В электрооборудовании, работающем в трехфазной сети напряжением до 1 кВ.
  3. В схемах с низким напряжением, обладающих защитными устройствами.

Под защитными устройствами подразумевается использование разделяющих трансформаторов или применение дополнительной изоляции. Дело в том, что обычными предохранителями и автоматическими выключателями невозможно произвести отключение слишком малого тока.

Такое оборудование просто не рассчитано на такие значения. Поэтому и требуется дополнительное релейное оборудование, которое предупредит об аварийной ситуации.

Так как эти устройства сложные в управлении, то их обслуживание проводят только высококвалифицированные работники.

Достоинства и недостатки

Одним из важнейших преимуществ режима таких сетей является наличие небольшого тока при однофазных замыканиях на землю. Этот факт позволяет гораздо увеличить эксплуатацию автоматических выключателей. Дело в том, что замыкание на землю составляет на практике 90% от общего числа аварийных ситуаций.

Кроме того, наличие малого тока позволяет снизить требования к заземляющему оборудованию. Такой режим нейтрали обладает и массой недостатков. Например, однофазное замыкание на землю может вызвать феррорезонансные явления, которые зачастую приводят к выходу из строя электрооборудования.

Могут возникнуть дуговые перенапряжения, приводящие однофазное замыкание в двух- и трехфазное. Кроме того, конструкция защит от замыкания довольно сложная, что приводит к ее недостаточной работоспособности и эффективности. Бытует мнение, что при однофазном коротком замыкании возможна дальнейшая эксплуатация электрооборудования.

Но практика показывает, что практически сразу происходят двух- и трехфазное короткие замыкания, которые в итоге приводят к отключению электрооборудования. При падении провода у опор линий электропередач, когда сохраняется короткое замыкание, появляются опасные напряжения прикосновения. Большинство смертельных случаев происходят именно в таких ситуациях.

Поэтому для бесперебойной работы электроснабжения в сетях с изолированными нейтралями используют автоматические включения резервных питаний.

В настоящее время изолированную нейтраль сложно встретить в быту, вы никогда с ней не столкнетесь, если делаете проводку в квартирах. В то время как высоковольтных линиях она активно используется, а также в некоторых случаях и в сетях 380В. Подробнее о том, что такое сеть с изолированной нейтралью и какие у нее особенности, мы расскажем простыми словами в этой статье.

Что это такое

Определение понятия «изолированная нейтраль» приведено в главе 1.7. ПУЭ, в пункте 1.7.6. и ГОСТ Р 12.1.009-2009. Где сказано, что изолированной называется нейтраль у трансформатора или генератора, не присоединенная к заземляющему устройству вообще, или, когда она присоединена через приборы защиты, измерения, сигнализации.

Схемы изолированной и глухозаземленной нейтрали

Нейтралью называется точка, в которой соединены обмотки у трансформаторов или генераторов при включении по схеме «звезда».

Среди электриков есть заблуждение о том, что сокращенное название изолированной нейтрали - это система IT, по классификации п. 1.7.3. Что не совсем верно. В этом же пункте сказано, что обозначения TN-C/C-S/S, TT и IT приняты для сетей и электроустановок напряжением до 1 кВ.

В той же главе 1.7 ПУЭ есть пункт 1.7.2. где сказано, что в отношении мер электробезопасности электроустановки делятся на 4 типа — изолированную или глухо заземленную до 1 кВ и выше 1 кВ.

Таким образом есть некоторые отличия в безопасности и применении такой сети в разных классах напряжения и называть линию 10 кВ с изолированной нейтралью «система IT» по меньше мере неправильно. Хотя схематически - почти тоже самое.

В сетях до 1 кВ

Общие сведения

Давайте разберемся где, как и в каких случаях используют изолированную нейтраль в электроустановках напряжением до 1000 В, так называемую систему IT. В ПУЭ главе 1.7. п. 1.7.3. дано определение похожее на то, что приведено выше, но оно несколько отличается. Там сказано, что корпуса и другие проводящие части в установках системы IT должны быть заземлены. Рассмотрим, как это выглядит на схеме.

Схема установки с изолированной нейтралью

Так как нейтраль трансформатора сети IT не соединена с землёй, то, говоря простым языком, у нас нет опасной разности потенциалов между землёй и фазными проводами. И случайное касание 1 провода под напряжением в системе IT безопасно. Из-за относительно низкого напряжения здесь пренебрегают емкостной проводимостью фаз.

В сетях с изолированной нейтралью нет выраженных фазы и нуля - оба проводника равноправны.

Ток через тело человека равняется:

Uф — фазное напряжение; rч — сопротивление тела человека (принимается 1 кОм); z — полное сопротивление изоляции фазы относительно земли (составляет 100 кОм и более на фазу).

Ток в этом случае возвращается к источнику питания через изоляцию проводов, а не в землю, как в случае с TN.

Так как сопротивление изоляции более 100 кОм на фазу, то сила тока через тело будет составлять единицы милиампер, что не причинит вреда.

Следующей особенностью этой системы является то, что токи утечки на корпус и токи КЗ на землю будут низкими. В результате защитная автоматика (релейная или автоматические выключатели) не срабатывают тем образом, к которому мы привыкли в сетях с глухозаземленной нейтралью. Но срабатывает система контроля сопротивления изоляции.

Соответственно при однофазном замыкании трёхфазной линии - система продолжит функционировать. При этом относительно земли возрастает напряжение на двух оставшихся проводах. Если человек коснется фазного провода - он попадает под линейное напряжение.

Обрыв в сети с изолированной нейтралью

В связи с такой конструкцией в сети с изолированной нейтралью нет двух видов напряжения в отличии от глухозаземленной, где между фазами Uлинейное (в быту 380В), а между фазой и нулём Uфазное (220В). Для подключения однофазной нагрузки к сети системой IT с напряжением 380В можно использовать понижающие трансформаторы типа 380/220 и подключать приборы между двумя фазами на линейное напряжение.

Сфера применения

Поговорим о том, где используются такое решение. Эта система электроснабжения применялась в отечественных электросетях для передачи электроэнергии жилым домам, во времена СССР. Особенно для электрификации деревянных домов, где при использовании глухозаземленной нейтрали повышался риск возникновения пожара при замыканиях на землю.

С точки зрения электробезопасности разница между изолированной и глухозаземленной нейтралью в электроснабжении домов, заключается в том, что если в сети IT один из проводников коснётся заземленных токопроводящих частей, например арматуры стен или водопровода, сеть продолжит функционировать, из-за малых токов утечки.

Соответственно ни жители, ни кто-то другой не узнает о проблеме, пока при одновременном касании кем-то одного из проводов и трубопровода - кого-то не ударит током.

Касание к токопроводящей части

В системе с глухозаземленной нейтралью как минимум сработает дифзащита, а при «хорошем» металлическом замыкании - отключится автоматический выключатель. С началом массового строительства панельных домов (т.н. хрущевок) от неё отказались и в 60-80-х годах перешли на TN-C, а в конце 90-х годов на TN-C-S, о причинах читайте ниже.

В настоящее время изолированная нейтраль используется везде, где нужно обеспечить повышенную безопасность или нет возможности сделать нормальное заземление, а именно:

  • В море — на судах, нефте- и газодобывающих платформах, где использование корпуса платформы в качестве заземления невозможно в связи с анодной защитой, а в местах стекания тока в воду она начнет усиленно ржаветь и гнить.
  • В шахтах и других местах добычи ископаемых (с напряжением 380-660В).
  • В метро.
  • На освещении и цепях управления в стационарных грузоподъёмных кранах и пр.
  • Также в бытовых бензиновых, газовых или дизельных генераторах на выходных клеммах именно изолированная нейтраль.

Она может встречаться не только в том виде, что мы привели на схеме выше, но и в виде понижающих и разделительных трансформаторов, которые используются для питания переносных осветительных приборов (не более 50В или 12В ПТЭЭП п.2.12.6.) и другого оборудования или инструмента, в том числе и тех, с которыми работают в замкнутых и сырых помещениях.

Мы разобрались для чего нужна изолированная нейтраль до 1 кВ, теперь перечислим достоинства и недостатки системы электроснабжения с изолированной нейтралью для чайников в электрике.

  1. Большая безопасность.
  2. Большая надежность, что позволяет использовать, например, для освещения в больницах.
  3. Экономический фактор - в трёхфазной сети с изолированной нейтралью можно передать электроэнергию по минимально возможному количеству проводов - по трём.
  4. Система продолжит работу при однофазных замыканиях на землю.
  1. При замыкании на землю повышается опасность использования, так как продолжается подача электроэнергии.
  2. Малые токи КЗ.
  3. Нет искр при первичном КЗ.

В сетях выше 1000 В

В настоящее время изолированная нейтраль чаще всего используется в сетях со средним классом напряжения (1-35 кВ). Для сети 110 кВ и выше - глухозаземленная. В связи с тем, что при КЗ на землю напряжение, как было сказано, возрастает до линейного, так в ЛЭП 110 кВ фазное напряжение (между землёй и фазным проводом) - 63,5 кВ. При КЗ на землю это особенно важно, и позволяет снизить расходы на изоляционные материалы.

Опоры 10 кВ

Кстати в КТП с высшим напряжением до 35 кВ первичные обмотки трансформаторов соединяются в треугольник, где нейтрали нет как таковой.

Высоковольтный трансформатор

Низкие токи КЗ и возможность работать при однофазных КЗ на ВЛ - в распределительных сетях особенно важны и позволяют организовать бесперебойное электроснабжение. При этом угол сдвига между оставшимися в работе фазами остаётся неизменным — в 120˚.

При напряжениях в тысячи вольт емкостной проводимостью фаз пренебречь нельзя. Поэтому касание проводов ВЛЭП опасно для жизни человека. В нормальном режиме токи в фазах источника определяются суммой нагрузок и емкостных токов относительно земли, при этом сумма емкостных токов равна нулю и ток в земле не проходит.

Если опустить некоторые подробности, чтобы изложить языком, понятным для начинающих, то при КЗ на землю напряжение относительно земли поврежденной фазы приближается к нулю. Так как напряжения двух других фаз увеличиваются до линейных значений их емкостные токи увеличиваются в √3 (1,73) раз. В результате емкостный ток однофазного КЗ оказывается в 3 раза большим нормального. Например, для ВЛЭП 10 кВ длиной 10 км емкостный ток равен примерно 0,3 А. При замыкании фазы на землю через дугу в результате различных явлений возникают опасные перенапряжения до 2-4Uф, что приводит к пробою изоляции и междуфазному КЗ.

Открытое РУ на подстанции

Для исключения возможности возникновения дуг и устранения возможных последствий нейтраль соединяют с землёй через дугогасящих реактор. Его индуктивность при этом подбирают согласно ёмкости в месте КЗ на землю, а также чтобы он обеспечивал работу релейной защиты.

Схемы замещения сети с изолированной нейтралью

Таким образом благодаря реактору:

  1. Намного уменьшается Iкз.
  2. Дуга становится неустойчивой и быстро гаснет.
  3. Замедляется нарастание напряжения после гашения дуги, в результате уменьшается вероятность повторного возникновение дуги и коммутационного тока.
  4. Токи обратной последовательности малы, следовательно, их действие на вращающейся ротор генератора не оказывает существенного влияния.

Перечислим плюсы и минусы высоковольтных сетей с изолированной нейтралью.

  1. Какое-то время может работать в аварийном режиме (при КЗ на землю)
  2. В местах неисправности появляется незначительный ток, при условии малой емкости тока.

ВЛЭП 10 кВ

  1. Усложнено обнаружение неисправностей.
  2. Необходимость изоляции установок на линейное напряжение.
  3. Если замыкание продолжается длительное время, то возможно поражение человека электрическим током, если он попадёт под шаговое напряжение.
  4. При 1-фазных КЗ не обеспечивается нормальное функционирование релейной защиты. Величина тока замыкания напрямую зависит от разветвленности цепи.
  5. Из-за накапливания дефектов изоляции от воздействия на нее дуговых перенапряжений снижается срок её службы.
  6. Повреждения могут возникнуть в нескольких местах из-за пробоя изоляции, как в кабелях, так и в электродвигателях и других частях электроустановки.

На этом обзор принципа действия и особенностей сетей с изолированной нейтралью заканчивается. Если вы хотите дополнить статью или поделится опытом - пишите в комментариях, мы обязательно опубликуем!

Читайте также: