Для чего нужен осциллограф: характеристика и принцип работы прибора, как правильно пользоваться устройством

Обновлено: 06.05.2024

Осциллограф - это цифровой или аналоговый прибор предназначенный визуального контроля формы напряжения и токов. Любой мастер или инженер занимающийся ремонтом электроники, должен уметь пользоваться Oscilloscope, для проведения диагностики.

Назначение осциллографа

Для разработки и ремонта современной электронной техники нужны специализированные знания в области электронных схемопостроений. При проектировании или исследовании любой схемы необходимо проводить измерения.Так как большинство схем имеют импульсный режим работы, то приборы должны соответствовать исследуемой технике.

Если мы до этого могли свободно обходиться мультиметром, измеряя необходимые значения токов и напряжения, то при диагностике современной электроники этого будет недостаточно. Так как помимо значений измеренных мультиметром, необходимо визуально контролировать форму сигнала устройства или участка схемы, который исследуется.

В этом случае применяется прибор называемый - Осциллографом. Данный прибор визуально показывает какие процессы происходят в электрической схеме, в определенный момент исследования. На практике научиться применять Oscilloscope можно пройдя очное обучение по программе Электроника и схемотехника в Bgacenter.

Визуализация процессов используя АКИП-4115/4А

Осциллографы существуют двух видов:

Развитие электронной техники вытеснили аналоговые, а цифровые завоевали особую популярность среди электронщиков и начинающих радиолюбителей. За счет простоты их использования, а также минимальной подготовки к работе. Данные приборы обладают большим функционалом, многими полезными функциями, которые отсутствуют у аналоговых приборов. При ремонте и настройке блока питания APW8 необходимо применять Oscilloscope, для визуального контроля амплитуды и длительности на входах полевых транзисторов каскада PFC и оконечного каскада.

Осциллограф - это практически тот же вольтметр, где измеряется напряжение, поэтому прибор подключается параллельно к участку измеряемой цепи, либо параллельно источнику питания. Если применить закон Ома, то можно увидеть форму тока. Для этого необходимо применить сопротивление значением 1 Ом, а при делении напряжения на сопротивление в 1 Ом получим силу тока и его форму.

Настройка осциллографа

В данной инструкции будем рассматривать все примеры, применяя цифровой осциллограф АКИП-4115/4А.

Для использования прибора его необходимо подключить к электрической сети, при помощи сетевого шнура идущего в комплекте с прибором.

Далее на верхней части корпуса необходимо нажать кнопку, подождать некоторое время, когда загрузится программа осциллографа. На экране появится заставка с названием прибора. После загрузки операционной системы устройства засветится дисплей (горизонтальная линия на экране прибора).

АКИП-4115/4А

Так как Oscilloscope является двух канальным, то по умолчанию включается первый канал. Клавиша КАН 1 на передней панели, обозначена желтым цветом. Канал подсвечивается, а на экране прибора так же светится желтая линия.

В нижней части панели управления имеется высокочастотный разъем BNC (Bayonet Neill-Concelman), также желтого цвета, что соответствует подсвечиваемой линии на экране осциллографа. Для второго канала используется синий цвет, это связано с удобством в работе при одновременном наблюдении осциллографом сигнала в исследуемом устройстве.

КАН1

Для дальнейшей работы необходимо перейти к определенным настройкам АКИП-4115/4А. По умолчанию может быть выставлен определенный режим работы, например заданный производителем (язык интерфейса, время, значения настроек). Для этого в данном приборе существует специализированное меню которое имеет 6 независимых функциональных кнопок расположенных в верхней части настроечного блока в два ряда.

Верхний ряд имеет клавиши:

Нижний ряд имеет клавиши:

Слева от данного меню находится регулятор “УСТАНОВКА”, который необходим для настройки необходимых параметров прибора в соответствующем МЕНЮ.

image9

При нажатии кнопки “Утилиты” в правой части экрана прибора появляется 4-х страничное меню. Самая верхняя клавиша “Меню вкл/выкл” может удалять при нажатии на нее меню с экрана прибора. В нижней части блока кнопок расположенных на панели экрана, расположена кнопка “Печать”. При помощи которой можно записать данные с экрана осциллографа на флеш носитель.

При повторном нажатии на клавишу “Меню вкл/выкл” меню снова появляется на экране. 4-х страничное меню, можно переключать нажимая пятую клавишу сверху.

Кнопка Меню ВКЛ/ВЫКЛ

При выборе первой страницы меню, клавишей “1” можно включить подменю “СТАТУС”, при этом на экране осциллографа появляется информация о статусе прибора. Выход из этого подменю осуществляется нажатием клавиши “Однократно”.

Статус прибора

Клавиша подменю “2” управляет отключением и включением звукового сигнала.

Клавиша “3” выводит на экран частоту измеряемого сигнала.

Кнопка “4” позволяет выбрать язык интерфейса.

При нажатии клавиши “5” включается вторая страница подменю. В этой вкладке, нажимая на кнопку “1” выполняется самокалибровка.

В режиме Самокалибровки необходимо отключить от прибора все пробники и кабели. Затем нажать кнопку “Однократно”, при этом появляется шкала зеленого цвета, которая заполняется. После завершения Самокалибровки нажать кнопку “Однократно”. Для выхода из режима Самокалибровки необходимо нажать клавишу “ПУСК/СТОП”.

Кнопка Однократно

Режим “Самотестирования”. При нажатии клавиши “2” открывается подменю соответствующее кнопкам:

  • 1 - Тест экрана (Screen Test). При нажатии этой клавиши, экран становится красным. Дальнейшее нажатие кнопки “Однократно”, цвет экрана может меняться на зеленый и синий. Эта функция помогает контролировать наличие основных цветов RGB (красный, зеленый, синий). Выход из данного меню осуществляется нажатием кнопки “ПУСК/СТОП”
  • 2 - Тест клавиатуры (Keyboard Test). При нажатии этой клавиши можно протестировать работу всех клавиш. При этом на экране соответствующая кнопка будет менять цвет на зеленый. Что говорит о исправности клавиш.
  • 3 - Тест Свд (LED Test). Проверка работоспособности подсветки кнопок.

Выход из данного подменю осуществляется нажатием кнопки “Утилиты”.

Утилиты

  • 1 - Обновление ПО
  • 2 - “Доп/Контр” использование дополнительных настроек
  • 3 - “Запись” - записывает данные на нужный носитель, в соответствии с выбранным подменю
  • 4 - “Установки порта”
  • 1 - Режим сохранения долговечности светодиодов
  • 2 - Регистратор

“Дисплей” - клавиша основного меню

При нажатии этой кнопки высвечиваются следующие пункты подменю:

  • 1 - “Вектор”
  • 2 - “Послесвечение”
  • 3 - “Яркость луча”
  • 4 - “Яркость сетки”

При нажатии клавиши “1” мы можем видеть линию осциллографа либо в виде точек, либо в виде прямой линии (вектор).

При нажатии клавиши “2” выбираем длительность свечения экрана после проведения измерения. От 1 секунды до бесконечности.

При нажатии клавиши “3” - мы можем регулировать яркость свечения луча при помощи ручки регулятора “Установка”.

При нажатии клавиши “4” мы можем регулировать яркость координационной сетки, для удобства пользования.

Выход из этого меню осуществляется нажатием клавиши “Утилиты”

“Измерения” - клавиша основного меню

При нажатии этой кнопки открывается пять видов подменю:

  • 1 - Напряжение. Выбор источника канала. Выбор типа измерения напряжения.
  • 2 - Время. Также выбор источника канала и тип длительности (частота)
  • 3 - Задержка.
  • 4 - Все измерения. Канал, напряжение и время. Сразу три характеристики одновременно отображаются на экране.
  • 5 - Удалить измерения.

“Курсоры” - клавиша основного меню

Устанавливает линии ограничения измерений по амплитуде и по частоте

“Сбор информации” - клавиша основного меню

Используется режим выборки

“Зап/Выз” - клавиша основного меню

Переводит режим осциллографа при нажатии первой клавиши к заводским настройкам.

“Начальные установки” переводит осциллограф к начальным установкам пользователя

“Помощь” - нажатие на эту кнопку вызывает справочное меню. Перемещение осуществляется с использованием кнопок 1-5.

“Пуск/Стоп” - применяется для остановки исследуемого сигнала. Чтобы измерить его длительность и амплитуду.

“АВТО” - автоматически находит исследуемый сигнал подаваемый на щупы осциллографа, для его дальнейшего исследования.

Регулятор управления вертикальной разверткой первого канала (желтого цвета) предназначен для выбора оптимальной величины амплитуды, для исследования сигнала.

Регулятор “Смещение” луча в вертикальном направлении

Что измеряет осциллограф

Для полноценной диагностики электронного устройства применяется Oscilloscope.

При помощи осциллографа можно измерить следующие параметры:

  1. Максимальную амплитуду любого сигнала
  2. Посмотреть эпюру напряжения и тока
  3. Измерить частоту сигнала
  4. Просмотреть фазу сигнала
  5. Измерить постоянное напряжение

Амплитуда сигнала есть максимальное значение которое выдается генератором при его работе. Если производить измерения мультиметром, то мы видим действующее значение тока или напряжения. Что зачастую бывает не достаточно при проектировании или ремонте электронных устройств. Поэтому в данном случае целесообразно применить мультиметр который измеряет максимальные амплитудные значения. Часто для этих целей применяется осциллограф. Например при рассмотрении синусоидального напряжения электрической сети через понижающий трансформатор на выходе диодного моста без сглаживающего конденсатора фильтра.

Эпюра напряжения или тока - это осциллограмма, то есть изображение на экране осциллографа, поданного на вход прибора любого исследуемого электрического сигнала. Измерения можно проводить в любой интересующей нас контрольной точке и сравнить ее с данными производителя.

Эпюра синусоидального напряжения сети

Частота сигнала - значение исследуемого сигнала во временном диапазоне по оси Х осциллографа. Так как данный сигнал измеряется по времени (сек, миллисекунд, микросекунд), то частота величина обратная времени. Поэтому для нахождения частоты необходимо применить формулу:

где f - частота, в Гц (Hz)

T - время, в сек (S)

Частота сигнала формы Меандр

Фаза сигнала - измеряется при помощи двух каналов. На один вход подается один исследуемый сигнал, на второй вход подается другой сигнал на этой же частоте. Сдвиг сигналов на экране прибора по времени и есть фаза.

Измерение постоянного напряжения. При помощи прибора можно измерять не только амплитудное переменное значение, но и постоянную составляющую напряжения.

Осциллограф без сигнала на входе

Измерение напряжение источника постоянного тока. На фото заметно поднятие горизонтальной полосы вверх относительно первоначального значения. Согласно координационной сетки Вольт/деление по оси Y можно рассчитать фактическое напряжение на выходе источника питания

Измерение постоянного напряжения

Как работает осциллограф

Последовательность работы с осциллографом:

  1. Включить Oscilloscope в электрическую сеть.
  2. Согласно инструкции выбрать соответствующие настройки в пунктах меню (язык, время, и т.д.).
  3. Произвести калибровку прибора.
  4. Подключить высокочастотные измерительные провода BNC к соответствующим разъемам, в соответствии с маркировкой.
  5. Начать проводить измерения, присоединив щуп к исследуемой точке на электронной плате.
  6. Если исследуемый сигнал не отображается на экране осциллографа в ручном режиме, необходимо нажать кнопку “АВТО”. При этом прибор покажет исследуемый сигнал.
  7. В случае когда эпюра сигнала не помещается на экране, ее необходимо удержать кнопкой “ПУСК/СТОП”, затем регуляторами вертикального и горизонтального усиления довести картинку до оптимального отображения.
  8. Во время проведения работ с осциллографом, соблюдайте технику безопасности. Особенно это касается при ремонте горячей части импульсного блока питания, привязанной к электрической сети. В этом случае, для полной безопасности лучше использовать разделительный трансформатор.

Как пользоваться осциллографом

Перед тем как начать пользоваться Oscilloscope, важно определиться какой сигнал предварительно может в данной точке измеряться прибором по амплитуде. Это необходимо в целях исключения поломки прибора. Согласно инструкции установить на приборе максимальное значение напряжения В/Деление по развертке Y. А по развертке X ожидаемую частоту сигнала.

Только после этого подключаем прибор к соответствующей контрольной точке для измерений. Затем проанализировать появившуюся эпюру напряжения. Для удобства отсчета существуют ручки смещения:

  • по оси координат Y - вертикальное отклонение
  • по оси Х - горизонтальное отклонение

При помощи этих регуляторов сместить полученное изображение к началу координат, для удобства отсчета. По осям Ординат и Абсцисс (Y,Х) существует координатная сетка. Она привязана к соответствующим условным значениям. По выбранным значениям можно посчитать полученное значение напряжение в вольтах и время в секундах. Для нахождения частоты, необходимо перевести время в частоту, по формуле f = 1/T.

Измерение сигнала с ШИМ-контроллера (видео)

Для примера возьмем плату от рабочего телевизора и посмотрим выходные импульсы с ШИМ-контроллера в различных режимах работы:

  • в дежурном режиме - когда телевизор включен в сеть, до нажатия на кнопки включения
  • в рабочем режиме - после нажатия на кнопку включения (или что то же самое под нагрузкой)

Удобно применять осциллограф, для исследования электрической схемы в случае, когда ШИМ-контроллер был бы не исправен. При присутствии питания на ШИМ-контроллере выходных импульсов не было бы. А присутствовало бы какое-нибудь напряжение. А это в свою очередь говорит о неисправности самого ШИМ-контроллера или его цепей.

Для чего нужен осциллограф

Измерить простые электрические величины, такие как ток, сопротивление, напряжение можно используя мультиметр. Но исследовать форму сигнала или поведение его во времени им не удастся. Поэтому для измерений, проверки и точной настройки приборов нужен осциллограф. Это универсальное устройство ранее применялось только в лабораториях и сервисных центрах, но сегодня стало вполне доступным для использования и радиолюбителями.

Виды и характеристики

Различные исследования в области электричества требовали прибора, позволяющего выполнять ряд измерений поведения того или иного параметра в течение промежутка времени. Родоначальником такого устройства стал Андре Блондель, родившийся в 1863 году во Франции. Изучая электротехнику, он основал в городе Леваллупе лабораторию. В ней, основываясь на теории Альфреда Корню, учёный придумал и сконструировал магнитоэлектрический прибор с бифилярным подвесом. Произошло это в 1893 году.

Это устройство позволяло регистрировать интенсивность переменных токов путём записи колебаний маятника с чернилами, соединённого с катушкой индуктивности. Измеритель отличался низкой точностью из-за механических частей. А полоса пропускания его лежала в диапазоне 10−19 кГц.


Дальнейшая эволюция прибора привела к появлению в 1897 году осциллографа с электронно-лучевой трубкой (ЭЛТ). Его конструктором стал физик из Германии Карл Браун. Но первый промышленный экземпляр был выпущен только в 1932 году британской компанией A. C. Cossor Ltd. В ноябре американская фирма Allen B. DuMont Laboratories представила осциллограф, состоящий из двух частей: ЭЛТ и кожуха. В последнем размещались блоки фокусировки луча, источник питания и узел развёртки. Но технология производства экрана позволяла его использовать не более одной тысячи часов.

Вторая мировая война остановила развитие прибора, но по её окончании инженеры Воллюм и Мердок, основатели компании Tektronix, внедряют в устройство прибора ждущую развёртку, то есть ту, которая запускается только во время возникновения электромагнитного сигнала. Этот прибор работал с полосой пропускания 10 МГц.

Развитие полупроводниковой техники привело к разработке цифрового устройства фирмой LeCroy в 1980 году. После чего цифровые аппараты стали массово производиться в Европе, не только профессионального уровня, но и радиолюбительского. На рынках появились всевозможные устройства, отличающиеся классом точности и функциональностью.

На начало 2000 годов цифровая техника почти полностью вытеснила аналоговые приборы, этому поспособствовало развитие персональных компьютеров и возможность сопряжения с ними измерителя. Но при этом, какой бы способ обработки сигналов ни использовался, принцип работы различных осциллографов остаётся одинаковым.

Аналоговое устройство

Сегодня всё реже можно встретить аналоговые осциллографы в исследовательских лабораториях или сервисных центрах. Но у радиолюбителей всё ещё достаточно морально устаревших, но ещё вполне работоспособных таких приборов. Любое аналоговое устройство состоит из одного или нескольких вертикальных каналов, горизонтального канала, схемы запуска и электронно-лучевой трубки (ЭЛТ).

ЭЛТ является основной частью устройства. На ней отображается форма исследуемого сигнала. Выполняется она из вакуумной колбы, в которую впаиваются электроды различного назначения. Первая группа формирует электронную пушку, образующую луч. На неё подаётся исследуемый сигнал. А вторая — состоит из контактов вертикально и горизонтально отклоняющих пластин и к ней подводится напряжение генератора развёртки.

Таким образом, устройство состоит из следующих частей:

  • аттенюатора — входной делитель напряжения;
  • предварительный усилитель;
  • блок задержки;
  • схема синхронизации и запуска развёртки;
  • генератор;
  • оконечный усилитель.

Измеряемый сигнал поступает на вертикальные пластины, а далее на аттенюатор, который позволяет настраивать чувствительность прибора. Выполняется регулирующее устройство в виде поворотной ручки. Шкала переключения указывается в вольтах на одно деление. При измерениях мощного сигнала используются делители. Это специальные устройства, работающие по принципу аттенюаторов, но при этом они уменьшают сигнал до безопасного уровня для входных цепей осциллографа.

Сигнал с делителя или аттенюатора разветвляется на предварительном усилителе и попадает в блок задержки и синхронизации. Последний узел создаёт условия для запуска генератора при появлении электромагнитных колебаний. Пилообразный сигнал с генератора поступает в горизонтальный канал X, где усиливается и подаётся на экран.

Вторая же часть сигнала через линию задержки поступает в канал Y, а затем на ЭЛТ. В результате на экране в системе координат XY выводится положение импульса. Нижний частотный предел находится в районе 10 Гц, а верхний зависит от ёмкости пластин и качества усилителей.

Поэтому если на пластины подаётся измеряемое напряжение, то луч начинает отклоняться по вертикали и горизонтали. Эти перемещения происходят синхронизировано, и в результате сигнал «разворачивается» во времени. Получившееся изображение на экране называют осциллограммой.

Цифровой прибор

Цифровое устройство сочетает в себе аналоговый осциллограф и мини-компьютер. Используя его можно не только визуально увидеть форму, но и выполнить ряд операций, таких как сложение и вычитание сигналов, преобразование Фурье, определение спектра. В состав прибора входит:

Цифровой осциллограф

  • масштабирующий узел;
  • аналого-цифровой преобразователь (АЦП);
  • оперативная память (ОЗУ);
  • микроконтроллер;
  • запоминающие ячейки;
  • экран;
  • элементы управления (кнопки, ручки).

Сигнал поступает на вход масштабирующего узла, где снижается до безопасной величины для внутренних схем прибора. Далее он подаётся через усилитель на АЦП. В нём происходит преобразование аналоговой формы в ряд дискретной последовательности логического кода. Для этого используется микроконтроллер, работающий на принципе широтно-импульсной модуляции (ШИМ).

Код записывается в ОЗУ, из которого после выполнения определённого условия передаётся в запоминающие ячейки. Каждому блоку соответствует пиксель, который засвечивается. Координата Х определяется номером ячейки, а координата Y кодом, записанным в неё. В запоминающей ячейке может содержаться несколько символов кода, которые и формируют линию из непрерывно горящих пикселей.

Цифровые осциллографы разделяются на несколько подтипов и могут быть:

  • Виртуальными — имеющими различные порты ввода и вывода. Они предназначены для работы с внешним программным обеспечением, устанавливаемым на ПК.
  • Стробоскопическими — использующими последовательную выборку мгновенных значений и временное их преобразование с помощью непродолжительных импульсов (стробов).
  • Фосфорными — отображающими сигнал во временной и амплитудной плоскости, а также его интенсивность. Такие приборы характеризуются высокой плотностью выборки и точностью.

Использование ЖК экрана повышает удобство в работе с осциллографом. На нём становится возможным визуально отображать любые данные, а использование памяти в устройстве позволяет сравнивать любые изменения формы сигнала во времени.

Параметры приспособления

Осциллограф, как и любой электрический прибор, имеет ряд технических параметров. Именно они определяют его функциональность и степень использования. К его работе предъявляются требования по классу точности, стабильности работы, шумовым характеристикам.

Важнейшими параметрами прибора являются:

Параметры приспособления

  • Полоса пропускания частоты. Характеризует точность измерений. Чем она больше, тем более детально можно изучить форму сигнала. При этом значение этого параметра должно превышать частоту исследуемого сигнала в несколько раз.
  • Дискретизация. Определяет разрешающую способность прибора.
  • Число каналов. Их значение определяет число одновременно независимых измерений, которые можно выполнить на устройстве. Это даёт возможность выводить на экран сразу несколько графиков и сравнивать их между собой. Радиолюбительский класс имеет 2−4 канала, а профессиональный до 16.
  • Размер памяти. Её величина влияет на скорость отклика устройства.
  • Тип питания. Существуют приборы, работающие от сети переменного напряжения 220 вольт или аккумуляторных батарей.
  • Время нарастания входного сигнала. Чем меньше, тем лучше. Это значит, что чем меньше «отгрызается» начало первого сигнала на экране при внутренней синхронизации, то тем лучше частотные свойства осциллографа.
  • Характеристики экрана. Сюда относится: детализация, инертность, частота развёртки. Причём чем выше разрешение, тем больше степень детализации.
  • Режим сегментированной памяти. Некоторые цифровые приборы имеют режим сегментированной памяти. То есть у них есть возможность выборочно фиксировать сигналы с нужной (высокой) частотой дискретизации.
  • Наличие эквивалентного режима. Применяется для исследования периодического сигнала. Позволяет поднять частоту дискретизации в несколько раз.

Применение осциллографа

Осциллограф предназначен для изучения различных взаимосвязей между несколькими величинами. Отображаемая на экране осциллограмма показывает как изменяется форма напряжения во времени. Так, по ней можно легко определить полярность, амплитуду, длительность, скважность и частоту сигнала.

Применение осциллографа

В грубом приближении осциллограф работает как графический вольтметр. Он измеряет сигнал и выводит его форму на дисплей. Устройством можно измерить даже напряжение высокой частоты. Его основное назначение заключается использование поиска неисправностей в сложных радиоэлектронных схемах или исследовательских измерениях. Например, с помощью него возможно:

  • определять временные параметры;
  • изучать фазовый сдвиг;
  • фиксировать частоту сигнала;
  • наблюдать переменную и постоянную составляющую напряжения;
  • отмечать присутствие гармоник и их параметров;
  • выяснять процессы, происходящие во времени.

Таким образом, осциллограф нужен для того, чтобы можно было наглядно наблюдать колебания электротехнического сигнала, а также видеть помехи и искажения, тем самым определяя неисправный элемент в различных узлах по форме входного и выходного импульса. Кроме этого, осциллограф широко применяется при диагностике электродвигателей. Изучая генерации, возникающие при работе мотора, можно вычислить неисправность катализатора, выявить увеличенный подсос воздуха, отследить сигналы с различных датчиков.

Работа с измерителем

Перед тем как воспользоваться осциллографом, выполняется калибровка. Для этого измерительные щупы подключаются к входу усилителя (отклонение луча в вертикальной плоскости) и общему выводу, обозначаемому как земля. В случае если используется ЭЛТ, после включения необходимо подождать некоторое время для прогрева экрана. Затем понадобится пройти следующие этапы:

  1. Регулятор установки времени выставляется на деление, соответствующее 1 мс/дел.
  2. Ручка «Вольт/деление» переключается в положение 0,5 В/дел.
  3. Контроль синхроимпульсов переводится в режим «авто». Если такое положение не предусмотрено, то выбирается внутренняя синхронизация и устанавливается тип сигнала — переменный.
  4. Вращая регуляторы положения луча (вверх/вниз и вправо/влево), устанавливают режим «Авто» или просто добиваются появления луча на экране.
  5. Переключатель вида сигнала переводится в позицию GND (земля).
  6. Общий щуп соединяется со специальным контактом заземления корпуса устройства. Если в осциллографе такого контакта нет, то зажим щупа одевается на любую неизолированную металлическую часть корпуса.
  7. Переключатель «Тип сигнала» переводится в нейтральное положение для подключения вывода к земле. Если же такого переключателя нет, то щупы замыкаются друг с другом.
  8. Ручками вертикальной и горизонтальной настройки добиваются установки луча на середину экрана.
  9. Если устройство имеет переключатель «Тип сигнала», то он устанавливается в положение замера постоянной формы или щуп просто отсоединяется от гнезда заземления.
  10. Переключением масштаба «Вольт/деление» добиваются разворачивания сигнала на весь экран, что повышает точность наблюдений.
  11. С помощью измерительных проводов приступают к нужным исследованиям, подстраивая в случае необходимости масштаб «Вольт/деление».

Таким образом, использование осциллографа, позволяет осуществлять операции по настройке и ремонту сложных приборов, которые с помощью тестера выполнить невозможно. Работа на современном устройстве не намного сложнее измерений, проводимых мультиметром.

Осциллограф - это прибор, широко используемый в лабораториях, научно-исследовательских центрах, мастерских и сервисах. Его применяют для наблюдения за амплитудными и временными параметрами электрического сигнала, их измерениями и записью. Этот инструмент станет незаменимым помощником любого инженера, тех, кто работает с аналоговыми и цифровыми приборами любого назначения. Им пользуются и радиолюбители, домашние мастера. Познакомимся более подробно с тем, что представляет собой осциллограф, для чего нужен он, как устроен и работает, для решения каких задач подходит. Определим основные моменты, которые помогут правильно подобрать прибор под определенные эксплуатационные условия.

Для чего нужен осциллограф

осциллограф

Основное назначение осциллографа - предоставление пользователю визуального отображения сигналов, поступающих на вход прибора с целью их последующего измерения и анализа в частотной, временной и логической области. Эти картинки можно сохранять, преобразовывать, что актуально при последующем исследовании, сравнении.

Один из важных моментов использования прибора - целостность поступающего сигнала. Осциллограф способен чрезвычайно точно воспроизводить форму входящего сигнал. В этом случае говорят, что его целостность высокая. Но если же она будет низкой, то работа осциллографа будет бесполезной: сигнал, который будет фиксировать прибор будет значительно отличаться от реального. Надо понимать, что достичь 100% идентичности не удастся даже на самом современном и качественном осциллографе. Проблема в том, что при подключении прибора к сети, он сам становится частью этой электрической схемы с ее нагрузкой, сопротивлением. Производители осциллографов пытаются минимизировать сторонние воздействия с целью повышения точности фиксации сигнала, но все же достичь полного подобия не удастся.

Принцип работы осциллографа

На сегодня наибольшее применение на практике получили цифровые осциллографы. Именно на их примере и рассмотрим принцип действия этих приборов:

Это упрощенное описание прибора. В реальности в нем происходит много дополнительных процессов, повышающий масштабируемость, точность и удобство работы пользователя.

Основные блоки осциллографа

АЦП

Устройство осциллографа также рассмотрим на примере цифровой модели. Он состоит из следующих основных узлов:

  • АЦП (аналогово-цифровой преобразователь). Компонент, способный преобразовать входящий аналоговый сигнал в цифровой.
  • Аттенюатор. В его обязанности входит масштабирование сигнала. Допустимый предел увеличения определяется динамическим диапазоном усилителя и возможностями АЦП.
  • Блок смещения. Речь идет о постоянной составляющей сигнала. Здесь также выполняется масштабирование, но уже учитывается динамический диапазон самого аналогово-цифрового преобразователя.
  • Усилитель вертикального отклонения. В обязанности этого компонента входит линейное усиление сигнала. Необходимо довести его до того предела, чтобы он не выходил за рамки диапазона АЦП.
  • Система запуска. Используется в случае комбинирования нескольких входных сигналов. Она способна находить уникальный момент времени внутри сигнала, согласно которому будут синхронизироваться данные.
  • Блок развертки по времени. Определяет начало и конец работы АЦП в зависимости от события запуска. Также в его обязанности входит определение частоты дискретизации аналогово-цифрового преобразователя. Этот параметр напрямую связан со свободной памятью прибора, что позволяет настраивать данные развертки по времени.
  • Внутренняя память каналов. Это своего рода оперативная память, в которой будет храниться информация в цифровом виде, поступающая от АЦП.

Также в конструкцию прибора входит дисплей, кнопки управления, интерфейсы, разъемы и другие элементы коммутации.

Виды осциллографов

Чтобы разобраться, как пользоваться осциллографом, необходимо понимать, с каким прибором вы имеете дело, то есть надо знать его вид. Сегодня рынок предлагает потребителям следующие варианты:

  1. Аналоговые осциллографы. Самое простое решение. Способны отображать входящий сигнал в режиме реального времени. Изображение получается четким, без цифровых шумов, искажений. Оно формируется в электронно-лучевой трубке. Опции записи не предусмотрено. Функциональность ограничена. Предусмотрена только возможность наблюдения за формой сигнала и приближенные измерения самых простых параметров.
  2. Цифровые осциллографы с функцией запоминания (DSO). В таких приборах исключены недостатки аналоговых моделей. В их конструкции уже есть АЦП, преобразующий сигнал. В цифровом виде можно хранить данные любой период времени, можно выполнять множество разных измерений. Информацию можно передавать с одного ПК на другой через сеть, внешние диски, флэшки или через LAN и USB интерфейсы. Управление приборами выполняется с панели, расположенной рядом с дисплеем.
  3. Цифровые осциллографы смешанных сигналов (MSO). Также относятся к запоминающим. Таким осциллографом измеряют смешанные сигналы. Они одновременно работают и с аналоговыми, и с цифровыми потоками, но выдают результат в едином масштабе времени.
  4. Цифровые стробоскопические осциллографы. Построены на принципе последовательного сигнального стробирования. Здесь при помощи коротких стробирующих импульсов измеряются мгновенные значения повторяющихся сигналов. Благодаря стробоскопическому эффекту обеспечивается повышенная чувствительность прибора одновременно с широкой полосой пропускания. Рабочая частота таких устройств измеряется десятками ГГц.
  5. Портативные осциллографы. От стационарных моделей отличаются меньшими размерами, низким потреблением энергоресурсов. Они могут функционировать и от сети, и от аккумуляторной батареи. Предназначаются для работы на открытых площадках, в полевых условиях.
  6. Комбинированные осциллографы. Помимо функций осциллографа, в них могут быть реализованы генераторы сигналов, логические анализаторы, анализаторы спектры, мультиметры, вольтметры, частотомеры. С их помощью выполняется анализ сигнала сразу в нескольких областях: частотной, временной, логической.

Чтобы подобрать вид осциллографа, необходимо четко понимать, с какими задачами он будет сталкиваться в рабочем процессе. И уже под них подбирается прибор.

Области применения

Цифровой запоминающий оcциллограф

Что такое осциллограф хорошо знают все, кто связан с разработкой или испытаниями компонентов электроники, радиоэлектроники и готовой аппаратуры. Сфера применения этих приборов очень разносторонняя. Их повсеместно используют в:

  • учебных, научно-исследовательских лабораториях для обучения студентов-электронщиков, выполнения рабочих исследований;
  • автомобильной промышленности для проверки работоспособности и выявления ошибок в работе электронной системы машин;
  • процессе проверки целостности сигналов и микроэлектронике;
  • аэрокосмической, оборонной области для тестирования средств связи радиолокационных сетей;
  • работах, связанных с тестированием систем и приборов на соответствие нормативным данным в области передачи данных;
  • разработке, тестировании передовых технологий и пр.

Область применения приборов очень широкая. И чем выше будет качество осциллографа, тем надежнее он будет в работе, а его данные - точными и корректными.

Как выбрать осциллограф: параметры, на которые стоит обратить внимание

Чтобы подобрать прибор под особенности предстоящей эксплуатации, мало знать, что осциллограф измеряет и как он работает. Необходимо еще выбрать его технические характеристики. К наиболее важным показателям относят:

  1. Полосу пропуская. Определяет максимальный диапазон частот, в котором обеспечивается точное измерение сигналов с ослабление не более чем до 70,7%.
  2. Частота дискретизации. Определяет число выборок, осуществляемых прибором за 1 секунду работы. Оптимально подобрать такой показатель, чтобы он более, чем в 5 раз превышал самую высокую частоту исследуемого сигнала.
  3. Время настройки. Определяет точность прибора при измерении длительности фронта изучаемых сигналов.
  4. Глубина памяти. Каждый прибор имеет свой ресурс для записи. И чем больше будет глубина памяти, тем более длинную запись он позволит получить.
  5. Время нарастания. Влияет на точность прибора при определении длительности фронта входящих сигналов.
  6. Вертикальное разрешение аналогово-цифрового преобразователя. Указывает на точность прибора в процессе перевода аналогового сигнала в цифровой. Чем выше оно, тем большей будет целостность сигнала.
  7. Чувствительность по вертикали. Отображает возможности усилителя системы вертикального отклонения. Особенно актуально при работе со слабыми входными сигналами.
  8. Число и тип рабочих каналов. Для аналоговых осциллографов вполне будет достаточно 2, 4 или 8 каналов. С их помощью можно будет получить всю информацию, необходимую для исследования. А вот в случае цифровых моделей, где реализована параллельная передача информации, не обойтись без 8, а иногда и 16 дополнительных каналов.
  9. Система запуска. Отвечает за захват событий сигналов. Применяется в случае выполнения более подробного анализа. С ее помощью повторяющиеся осциллограммы отображаются четко и корректно. Погрешность изображения и анализа входящего сигнала зависит от гибкости работы системы запуска и ее изначальной точности.
  10. Согласованные пробники. К пробникам предъявляется ряд жестких требований. Так, его собственная емкость должна быть минимальной и не создавать чрезмерную нагрузку на сеть тестируемого прибора. А вот полоса пропускания пробника должна быть максимально близкой к полосе пропускания самого осциллографа.
  11. Простота и удобство управления. С прибором должны уверенно работать люди с разным уровнем квалификации и подготовки. За удобство работы отвечает интерфейс, продуманность навигации и пр.
  12. Выполнение автоматических измерений. Ускоряют и упрощают получение сигнала.
  13. Программное обеспечение. Чем более гибким будет ПО осциллографа, тем большую эффективность можно получить в процессе диагностики электрических и оптических схем. Будет особо полезным при выполнении тестирования на соответствие стандартам.
  14. Систему навигации и анализа. Незаменима на этапе поиска аномалий сигнала. Автоматизирует этот процесс, ускоряет получение результата.
  15. Тип питания. Осциллограф может работать от электрической сети или встроенной аккумуляторной батареи. Последний вариант питания преимущественно реализован в полевых приборах.
  16. Наличие дополнительных программных опций. Прибор должен обеспечивать как нынешние требования, так и потенциально возможные. Некоторые модели дополнительно позволяют расширять полосу пропускания, добавлять новые рабочие опции, увеличивать память каналов.
  17. Интерфейсы. Удобно, когда прибор можно подключать непосредственно к ПК или передавать информацию через сменные носители. Так работа с документированием, обменом данными будет более простой и быстрой.

Чтобы сориентироваться во всех этих параметрах и подобрать осциллограф, максимально точно соответствующий предстоящей задаче, необходимо обладать глубокими знаниями. И если у вас есть сомнения, рекомендуем обратиться за профессиональной помощью к специалистам компании «Sernia Инжиниринг». Они помогут подобрать подходящее сертифицированное оборудование под запросы каждого клиента. Консультации можно получить по телефону или через онлайн-форму.

Читайте также: