Драйвер для светодиодных светильников: что это такое, какие подходят для лед-ламп, максимальное рабочее расстояние до уличных диодных светильников

Обновлено: 27.04.2024

Данная статья не ставит перед собой целью дать строгое и исчерпывающее объяснение с точки зрения светотехники вопроса расчета освещенности помещений. Ее задача — в максимально понятном виде описать основные факторы и дать ориентировочную информацию, руководствуясь которой дизайнеры и рядовые покупатели смогут оценить, какой именно светильник выбрать.

Принципы грубой прикидочной оценки, которой на практике пользуются дизайнеры и архитекторы при подборе света в неспецефических случаях сводится к простой норме, изложенной в таблице ниже.

Обратите внимание! Оценка количества света, производимого лампой, в зависисмости от ее мощности в ваттах является, строго говоря, не совсем корректной и используется в этой таблице только из-за широкой распространенности. В таблице имеются в виду ватты, потребляемые стандартной лампой накаливания и если идет речь о любых лампах другого типа, необходимо использовать поправочные коэфициенты (таблица 2), а в случае светодиодов — данная таблица вообще не будет применима. Кроме того, в таблице имеется в виду освещенность помещения в целом. В ряде случаев (например, для рабочей зоны кухни или кабинета), подразумевается, что при освещении рабочих поверхностей используется специальное местное освещение.

Помещения, где используется приглушенный свет

10-12W на квадратный метр

или 100 - 150 Lm для LED

Помещения, где используется средний уровень света

Санузел, рабочий кабинет, детская

15-18W на квадратный метр

или 150-200 Lm для LED

Помещения с самой яркой освещенностью

20W на квадратный метр

или 200-230 Lm для LED

Таким образом, для получения представления о том, сколько ламп необходимо для освещения Вашей комнаты, Вам нужно умножить площадь комнаты (в квадратных метрах) на количество ватт (или Люмен, LM) из строчки таблицы, соответствующей типу вашей комнаты.

Далее, в ряде случаев, необходимо внести соответствующие поправки:

Если высота потолков в комнате более 3 метров, общее число необходимых ватт нужно умножить минимум на 1,5

Если стены комнаты и мебель выдержаны в темных тонах с матовым характером поверхности, количесто света также нажо брать не по норме а с запасом. Привести конкретный коэфициент в данном случае невозможно

Как упоминалось выше, все значения в ваттах в таблице даны с ориентацией на обычную лампу накаливания. Если в светильниках, которые Вы планируете купить, установлены лампы другого типа, то следует иметь в виду следующие соотношения:

Галогеновые лампы без отражателей

При одинаковой потребляемой мощности, галогенная лампа дает примерно в 1,5 раза больше света.

Это значит, что галогеновая лампа 40W приблизительно идентична обычной лампе накаливания мощностью 60W

Люминесцентные и энергосберегающие лампы

При одинаковой потребляемой мощности, люминесцентная (энергосберегающая) лампа дает примерно в 5 раза больше света.

Это значит, что энергосберегающая лампа мощностью 15W дает примерно столько же света, сколько и обычная лампа накаливания мощностью 75W.

Здесь на W лучше не смотреть, нужно смотреть на Lm (Люмены).
В W (ваттах) указывают, сколько лампочка потребляет электричества, а в Lm указывают, сколько она дает света.

Есть некоторые производители лампочек, которые вообще не указывают Lm на своих светодиодных лампочках, рекомендуем таких производителей обходить стороной.

Потому что бывает так, что у одного производителя, на лампочке заявлено 10W и не указаны Lm, а по факту она светит меньше чем 6W у другого производителя, что видно даже без замеров Lm.

Нужно осветить детскую комнату площадью 30 квадратных метров и высотой потолка 2,6 метра. Общую освещенность на квадратный метр берем из первой таблицы как 17W на квадратный метр. Получается, что общая освещенность должна быть примерно такой, какую обеспечат лампы накаливания суммарно, потребляющие 510W.

Если светильник будет не с обычными лампами накаливания, а галогеновыми, то расчет необходимо скорректировать. Вы можете пойти двумя путями, которые приведут к одной и той же цели:

Общую необходимую мощность делим на 1,5. Получается, что нам нужно не 510W а 340W. Это, например, 7 галогеновых ламп по 50W. Неудобство способа в том, что Вам придется помнить сразу несколько цифр общей освещенности — для галогеновых ламп, для накаливания, для энергосберегающих.

Мы выяснили, что необходимо 8 ламп накаливания по 60W. С учетом коэфициента, это значит, что точно также подходят для освещения и 8 галогеновых ламп по 40W, или 8 энергосберегающих ламп по 11W. Этот способ оценки проще использовать, когда Вы привязаны к количеству ламп. Например, Вы хотели бы в комнате одну люстру на 5 рожков максимум, один торшер и одну бра с двумя лампочками. Вот и искомые 8 ламп. Остается только определить, какие они будут, а это станет ясно непосредственно в магазине, когда Вы будете смотреть люстры вживую. Если дома Вы приготовите себе шпаргалку, то в магазине с первого взгляда будет знать, какие люстры стоит смотреть, а на какие и время тратить не стоит.

Обратите внимание! Глядя на светильник, не забудьте спросить о максимально допустимой мощности устанавливаемых в него ламп. Может получиться так, что Вы найдете, допустим, трехрожковую люстру и уже займетесь подбором бра к ней, а при покупке выяснится, что в Вашу люстру можно ставить лампочки максимум 60W. Получится, что все время на подбор бра потрачено зря — света Вам явно не хватит и надо искать другую люстру.

Предупреждение! Все расчеты в статье даны для "голой" лампы, без абажура, плафона и т.п. Если они будут из темного, светозадерживающего материала, то освещенность падает драматически!

Важно помнить, что ограничение на мощность лампы накладывает, как правило, не плафон, а установленный патрон. Он может быть пластмассовый — и тогда из чего бы не был сделан светильник, лампочку больше чем на 60W в него ставить нельзя.

Не стоит оценивать на глаз возможную максимальную мощность, исходя из того, стекло, пластик или ткань использованы для абажура — лучше уточните этот вопрос у продавца.

И последний совет: лучше не стремиться обеспечить всю необходимую освещенность комнаты одной люстрой. Используйте поддерживающий свет — бра, торшеры, настенные светильники. Это даст вам возможность варьировать освещенность, расставлять акценты и, в ряде случаев, экономить электроэнергию.

Драйвер - это плата с электронными компонентами, обеспечивающая питание светодиодов, преобразуя переменный ток в постоянный. В зависимости от компонентов определяется тип драйвера. Обязательными составляющими любого драйвера являются:

  • диодный мост, который преобразовывает переменное напряжение в постоянное;
  • входной конденсатор, который сглаживает колебания тока;
  • входной резистор, который ограничивает ток в момент включения лампы и не даёт выключателю искрить;
  • выходной конденсатор, который устраняет колебания тока и помех, появившихся в процессе преобразования тока;
  • выходной резистор, обеспечивающий разряд выходного конденсатора при выключении лампы и регулировки нагрузки в случае выхода из строя части светодиодов.

В зависимости от того, какие ещё компоненты присутствуют на плате драйвера, их разделяют на три типа: Linear, Linear IC и IC.

Типы драйверов светодиодных ламп

Linear

Linear, или просто линейный драйвер, является самым простым и дешевым драйвером. На его плате присутствуют только самые необходимые элементы. Основная его функция - преобразование переменного тока в постоянный, он не защищает светодиоды от перепадов напряжения в сети. Чаще всего этот тип драйвера используется в лампах, в которых недостаточно места для размещения более сложных типов драйверов и в маломощных лампах. Например, Linear драйвер часто используют в филаментных лампах.

Linear драйвер - это плата с электронными компонентами, которая преобразовывает переменный ток в постоянный.


Constant Linear драйвер.

Linear IC

Linear IC драйвер (Integrated Circuit — интегральная микросхема) отличается наличием простой IC микросхемы. Такой драйвер защищает лампу от перепадов напряжения в узком диапазоне, но не от перепадов силы тока и всё ещё является бюджетным решением для LED лампы. Linear IC драйвера используются во всех типах светодиодных ламп и светильников.

Linear IC драйвер - это плата с электронными компонентами, преобразовывающая переменный ток в постоянный и содержащая микросхему стабилизирующую напряжение.


DoB Linear IC драйвер.

IC

Самый сложный - это IC драйвер . В нём больше всего компонентов что делает его более массивным, но и более надёжным в работе. Наличие IC микросхемы позволяет драйверу контролировать не только поступающее на светодиоды напряжение, но и силу тока. Высокочастотный EMC-фильтр устраняет помехи, создающиеся при преобразовании тока, а трансформатор (или катушка) снижает входящее напряжение до уровня, необходимого для стабильной работы светодиодов. Такой драйвер обеспечивает продолжительную работу светодиодной лампы и используется во всех видах лампочек и светильников.

IC драйвер - это плата с электронными компонентами, которая преобразует переменный ток в постоянный и содержит микросхему, стабилизирующую входящее напряжение и силу тока.


Constant IC драйвер с компонентами, размещёнными на одной стороне платы.

Электронные компоненты IC драйвера могут быть расположены как на одной стороне платы, так и на обеих. Размещение на обеих сторонах обеспечивает лучшее охлаждение компонентов и увеличивает срок их службы.


Constant IC драйвер с компонентами, размещёнными на разных сторонах платы.

Способ монтажа драйвера

Сам драйвер может быть соединен со светодиодной платой двумя способами: DoB и Constant.

DoB

DoB (Driver on Board) означает “драйвер на плате”. При таком способе монтажа большая часть или все элементы драйвера наносятся на плату со светодиодами, а не на отдельную. DoB драйвера более бюджетные и позволяют сэкономить место в корпусе лампы, однако размещение драйвера на плате со светодиодами приводит к перегреванию элементов. Поэтому лампы с драйверами DoB по сравнению с лампами с драйвером Constant имеют меньший срок эксплуатации.

Способ DoB встречается практически во всех LED лампочках и светильниках из-за его дешёвого производства. Однако для многих LED светильников с компактным корпусом (таких как прожекторы) способ DoB является единственным возможным решением.

Драйвер DoB - это драйвер, электронные компоненты которого установлены на плату со светодиодами.


DoB Linear IC драйвер.

Constant

Constant, или встречается название Isolated (изолированный), драйвер - это также драйвер, электронные компоненты которого нанесены на отдельную плату, а не на плату со светодиодами. Такой способ установки более дорогостоящий и требует дополнительного места, но обеспечивает лучшее охлаждение светильника и продлевает срок его службы.

Способ Constant встречается в филаментных лампах, водонепроницаемых ЖКХ светильниках, мебельных светильниках.

Драйвер Constant - это драйвер, который расположен отдельно от платы со светодиодами.


Constant IC драйвер.

Важно запомнить, что IC, Linear IC и Linear — это типы драйвера, а DoB и Constant — это способы его размещения.

Самым надёжным, но и дорогим вариантом является Constant IC драйвер. С ним лампа будет работать не один год и проявлять устойчивость не только к перепадам напряжения в сети в широком диапазоне, но и к перепадам силы тока.

В этом обзоре будет изучен и протестирован драйвер для линейных светодиодных светильников. Заодно выясним, как его настроить под конкретное применение; и почему он не подойдёт для светодиодных лент.

Содержание

Итак, драйвер выполнен в виде узкой конструкции, предназначенной для установки в тонкие линейные светильники:


Ключевое свойство платы состоит в том, что она - очень узкая: ширина составляет всего 16 мм.

А светильники, в которых применяются подобного рода светодиодные драйверы, выглядят так:


Широкие платы в такой конструкции было бы просто невозможно разместить.

Но при этом никто не запрещает устанавливать такой драйвер и в большие плоские светильники (квадратной или прямоугольной формы), если схема соединения светодиодов в них идеологически подходит для такого драйвера (высокое напряжение при относительно низком токе).

Конструкция и схемотехника светодиодного драйвера

Светодиодный драйвер основан на понижающем DC-DC преобразователе со стабилизацией тока выхода (тока, а не напряжения!).


Главный и единственный чип драйвера - BP2866C. Он виден на фото как микросхема с 7-ю ножками (должно быть 8 ножек, но одной ножки нет за ненадобностью).

За величину тока стабилизации отвечают два SMD-резистора, соединённых параллельно: 1.3 Ом и 2.1 Ом (расположены на фото выше микросхемы).

Для такой конфигурации "по умолчанию" ток выхода составил 230 мА.

Питающее напряжение драйвера поступает на стандартную выпрямительную схему: диодный мост с электролитическим конденсатором (номинал 10 мкФ * 400 В).

Голубая деталь округлой формы на плате - варистор, защищающий плату от чрезмерных бросков входного напряжения.

В схеме формирования выходного напряжения участвуют: индуктивность, обычный маломощный (но высоковольтный) диод и электролитический конденсатор 2.2 мкФ * 400 В, сглаживающий пульсации выходного напряжения.

При отсутствии нагрузки напряжение на выходе драйвера становится близким к напряжению выпрямленного входного напряжения; при питании от сети 220 В получилось 284 В.

Осциллограмма напряжения на высоковольтном выходе микросхемы преобразователя:


Частота импульсов составила почти точно 100 кГц.

Испытания светодиодного драйвера для линейных светодиодных планок и теория их совместного применения

Сначала разберём вопрос, для чего приобретался этот драйвер: это поможет нам разобраться с областью его применения.

Началось всё с того, что у меня сгорел линейный светодиодный светильник. Вот что было обнаружено после разборки:


Такие светильники сейчас массово выпускаются для замены морально устаревших ламп дневного света (содержащих ртуть, а также имеющих относительно небольшой срок службы и абсолютно неремонтопригодных).

Осмотр показал, что в светильнике сгорел драйвер светодиодной планки. Сгорел драйвер очень хорошо, даже испарилась одна из ножек диодного моста:


Обычно в таких случаях сгорает не только диодный мост, но и окружающая его обвязка. В связи с этим было принято решение не пытаться ремонтировать драйвер, а целиком заменить его на новый.

Умерла, так умерла!

Анализ светодиодной планки, на которую работал драйвер, показал, что она состоит из 31-ой последовательно соединённой секции светодиодов; в каждой секции по 2 параллельных светодиода.

Прозвонка всех секций с помощью источника 5 В и резистора 1 кОм показала, что при гибели драйвера ни один светодиод не пострадал; и вся планка пригодна к дальнейшему употреблению (но так может быть не всегда).

На планке имеется условное обозначение, раскрывающее её структуру: 2B31C (количество светодиодов в секции и число последовательных секций):


Расчёт тока, потребляемого светодиодной планкой, был произведён для типового падения напряжения на белом светодиоде 3 В.

Номинальная мощность светильника составляла 12 Вт, падение напряжения 31*3 В = 93 В, ток составляет 12 Вт / 93 В = 129 мА.

Готового драйвера с таким выходным током не было, поэтому был куплен драйвер на ток 220-230 мА с расчётом на последующую доработку.

Кратковременное испытание драйвера с этой планкой без доработки показало, что отдаваемый ток составляет ровно 230 мА, что может представлять опасность при длительном питании светодиодной планки, рассчитанной только на 129 мА. Даже можно сказать, что точно убьёт. :)

Но, к счастью, производителем была предусмотрена возможность регулировки выходного тока. Эта возможность заключается в том, что на плате в качестве задающих выходной ток резисторов установлены параллельно 2 резистора разных номиналов: 1.3 Ом и 2.1 Ом; их параллельное сопротивление составляет 0.8 Ом.

Благодаря этому, выпаивая из платы один или другой резистор, можно получить ещё два варианта тока нагрузки (расчетные величины): 142 мА (если выпаять 2.1 Ом) или 88 мА (если выпаять 1.3 Ом).

Я решил выпаять резистор 2.1 Ом, задав, тем самым, ток 142 мА. Это - выше ранее рассчитанного для ремонтируемого светильника номинала 129 мА, но превышение - небольшое, и к сгоранию светодиодов привести не должно (вроде бы).

Испытание после этой доработки показало, что реальный ток очень близок к расчётному и составил 141 мА. Напряжение на светодиодной планке при этом оказалось немного выше расчётного (93 В) и составило 98.8 В.

Следующее испытание - проверка стабильности выходного тока в зависимости от выходного напряжения.

Для этой проверки не использовалось никакого сложного оборудования: изменение напряжения на выходе осуществлялось поочерёдным замыканием разного количества секций в светодиодной линейке. Замыкание каждой секции уменьшает напряжение на оставшейся рабочей части линейки примерно на 3 В.

Проверка проводилась после доработки драйвера со снижением выходного тока до 141 мА (измеренное значение).

Результаты оказались такими: при замыкании 1-2 секций ток в нагрузке увеличивался на 1 мА; при замыкании 3 - 4 секций увеличивался ещё на 1 мА (до 143 мА); при замыкании 21 секции (осталось ровно 10 секций) ток составил 149 мА при напряжении на нагрузке 32.7 В. Это - очень хороший результат с точки зрения стабильности выходного тока.

Теперь, пожалуй, самый важный тест: на пульсации (мерцания) яркости питаемой от этого драйвера светодиодной планки.

Для проверки использовался "колхозный", но проверенный в работе, датчик освещённости на основе солнечной панели.

И вот - осциллограмма освещённости:


На осциллограмме видим почти идеальную ровную линию; что в высшей степени одобряем: вреда для зрения из-за мерцания света не будет.

Теперь разберёмся, почему такой замечательный светодиодный драйвер нельзя применить для питания светодиодных лент.

Отличие линейных и "плоских" светодиодных светильников от светильников на основе светодиодных лент

Как устроена светодиодная планка в линейных светильниках, уже было рассмотрено выше: она состоит из светодиодов, соединённых между собой в последовательно-параллельные секции. Никаких других элементов, кроме светодиодов, на планке нет.

Количество последовательных секций обычно составляет 10-40; количество параллельных светодиодов в каждой секции от одного и выше; в типовых случаях 2 - 5.

"Плоские" светильники обычно состоят из нескольких подобных светодиодных планок, расположенных параллельно друг другу.

Что касается светодиодных лент, то они устроены по-другому.

Они питаются не от источника с фиксированным током, а от источника с фиксированным напряжением; а в качестве драйвера в каждой секции используется банальный резистор.

Напряжение питания лент обычно составляет 12 или 24 В, но можно найти и с питанием 5 В.

Светодиодные ленты, как и линейки, тоже состоят из множества секций; но соединены они параллельно, и состоят эти секции из нескольких последовательных светодиодов и резистора. Секции соединяются параллельно в ленту на гибкой основе (светодиодные планки отличаются тем, что обычно изготовляются на жесткой основе из тонкого стеклотекстолита).

Между секциями на ленте часто рисуют линию разреза, по которой можно отрезать кусок необходимой длины.

Так выглядят секции светодиодной ленты на самое ходовое напряжение (12 В):


Каждая секция состоит из трёх последовательных светодиодов и резистора 150 Ом. При питании напряжением 12 В такая секция потребляет ток 20 мА.

Длина секции - 2.5 см, в ленте длиной 1 м содержится 40 секций (плотность светодиодов - 120 на метр).

Потребляет 1 метр такой ленты около 800 мА.

Иными словами, для питания светодиодных лент нужен источник с совершенно противоположными свойствами, чем у протестированного драйвера: с невысоким напряжением, но высоким выходным током. При этом напряжение должно быть стабильным: из-за применённой схемотехники с резистором даже небольшие колебания напряжения приведут к значительным колебаниям яркости.

И, наконец, что лучше: светодиодная линейка (планка), или светодиодная лента?

С точки зрения КПД лучше светодиодные планки, так как на светодиодных лентах в каждой секции установлен резистор, бесполезно рассеивающий 15-30% поступающей энергии (в зависимости от типа ленты).

Протестированный драйвер показал высокие технические характеристики; а самое главное - он отдаёт очень стабильный ток, благодаря чему и испускаемый свет от питаемой светодиодной линейки практически не имеет пульсаций.

Пожалуй, в этом и состоит основное достоинство линейных светильников по сравнению со светодиодными лампами. В обычных грушевидных лампах из-за их ограниченных габаритов устанавливаются более примитивные драйверы, вследствие чего большинство недорогих ламп мерцают.

Путём несложной доработки драйвера можно изменить номинальное значение отдаваемого тока с 230 мА на 140 или 90 мА. Можно получить и другие значения тока, но для этого придётся добыть и впаять резистор из внешних источников радиодеталей.

Здесь же отметим и небольшой недостаток такого рода регулировки (выпаиванием резистора): производитель не предусмотрел такого удобного для пользователя метода регулировки выходного тока, как замыкание или размыкание контактных площадок (это было бы проще, чем выпаивание SMD-резисторов).

В качестве дополнительного полезного эффекта, полученного в ходе тестирования стабильности выходного тока, надо отметить подтверждение возможности ремонта светодиодных планок методом замыкания сгоревших светодиодных секций. В этом случае ток в оставшихся рабочих секциях существенно не изменится.

Правда, такой метод ремонта имеет ограничения.

Во-первых (важно!), он применим только в тех случаях, когда в светильнике применён драйвер с хорошей стабилизацией выходного тока (подобный протестированному).

Во-вторых, такой метод будет не слишком эстетичным, поскольку в светодиодной планке образуются "пустые" места (не светящиеся светодиоды). Допустима ли такая потеря гламура - зависит исключительно от вкуса владельца.

И, последнее замечание касается техники безопасности.

Выход драйвера не изолирован гальванически от входа, поэтому вся схема, включая светодиоды, будет находиться под сетевым напряжением.

Соответственно, в светильнике, в котором будет применён этот драйвер, не должно быть доступных для прикосновения токоведущих частей (имейте это в виду в случае сборки собственной конструкции).

Коротко - об области применения протестированного драйвера (и ему подобных).

Основная область применения - ремонт светильников с одной или несколькими высоковольтными светодиодными планками.

С его помощью возможно и создание собственных конструкций с немерцающим светом, но здесь всё непросто. По результатам моих поисков, подходящие светодиодные планки практически отсутствуют в розничной продаже. Вероятно, почти все они поступают производителям конечной продукции (светильников).

Из того, что удалось найти, на Алиэкспресс есть светодиодные планки со встроенным примитивным драйвером с питанием от 220 В (ссылка). Теоретически, можно этот примитивный драйвер выломать, и вместо него подключить приличный светодиодный драйвер без мерцания, подобный протестированному, подрегулировав величину выходного тока (но я не пробовал).

Читайте также: