Как устроены генераторы постоянного и переменного тока, основные типы, конструктивные особенности, схемы, разница между генераторами

Обновлено: 16.05.2024

На заре электрификации генератор постоянного тока оставался безальтернативным источником электрической энергии. Довольно быстро эти альтернаторы были вытеснены более совершенными и надёжными трехфазными генераторами переменного тока. В некоторых отраслях постоянный ток продолжал быть востребованным, поэтому устройства для его генерации совершенствовались и развивались.

Даже в наше время, когда изобретены мощные выпрямительные устройства, актуальность генераторов постоянного электротока не потерялась. Например, они используются для питания силовых линий на городском электротранспорте, используемых трамваями и троллейбусами. Такие генераторы по-прежнему используют в технике электросвязи в качестве источников постоянного электротока в низковольтных цепях.

Устройство и принцип работы

В основе действия генератора лежит принцип, вытекающий из закона электромагнитной индукции. Если между полюсами постоянного магнита поместить замкнутый контур, то при вращении он будет пересекать магнитный поток (см. рис. 1). По закону электромагнитной индукции в момент пересечения индуцируется ЭДС. Электродвижущая сила возрастает по мере приближения проводника к полюсу магнита. Если к коллектору (два жёлтых полукольца на рисунке) подсоединить нагрузку R, то через образованную электрическую цепь потечёт ток.

Принцип действия генератора постоянного тока

Рис. 1. Принцип действия генератора постоянного тока

По мере выхода витков рамки из зоны действия магнитного потока ЭДС ослабевает и приобретает нулевое значение в тот момент, когда рамка расположится горизонтально. Продолжая вращение контура, его противоположные стороны меняют магнитную полярность: часть рамки, которая находилась под северным полюсом, занимает положение над южным магнитным полюсом.

Величины ЭДС в каждой активной обмотке контура определяются по формуле: e1 = Blvsinw t; e2 = -Blvsinw t; , где B - магнитная индукция, l - длина стороны рамки, v - линейная скорость вращения контура, t - время, w t - угол, под которым рамка пересекает магнитный поток.

При смене полюсов меняется направление тока. Но благодаря тому, что коллектор поворачивается синхронно с рамкой, ток на нагрузке всегда направлен в одну сторону. То есть рассматриваемая модель обеспечивает выработку постоянного электричества. Результирующая ЭДС имеет вид: e = 2Blvsinw t, а это значит, что изменение она подчиняется синусоидальному закону.

Строго говоря, данная конструкция обеспечивает только полярность неподвижных щеток, но не устраняет пульсации ЭДС. Поэтому график сгенерированного тока имеет вид, как показано на рис.2.

График тока, выработанного примитивным генератором

Рисунок 2. График тока, выработанного примитивным генератором

Такой ток, за исключением редких случаев, не пригоден для использования. Приходится сглаживать пульсации до приемлемого уровня. Для этого увеличивают количество полюсов постоянных магнитов, а вместо простой рамки используют более сложную конструкцию - якорь, с большим числом обмоток и соответствующим количеством коллекторных пластин (см. рис. 3). Кроме того, обмотки соединяются разными способами, о чём речь пойдёт ниже.

Ротор генератора

Рис. 3. Ротор генератора

Якорь изготавливается из листовой стали. На сердечниках якоря имеются пазы, в которые укладываются несколько витков провода, образующего рабочую обмотку ротора. Проводники в пазах соединены последовательно и образуют катушки (секции), которые в свою очередь через пластины коллектора создают замкнутую цепь.

С точки зрения физики процесса генерации не имеет значения, какие детали вращаются - обмотки контура или сам магнит. Поэтому на практике якоря для маломощных генераторов делают из постоянных магнитов, а полученный переменный ток выпрямляют диодными мостами и другими схемами.

И напоследок: если на коллектор подать постоянное напряжение, то генераторы постоянного тока могут работать в режиме синхронных двигателей.

Конструкция двигателя (он же генератор) понятна из рисунка 4. Неподвижный статор состоит из двух сердечников полюсов, состоящих из ферримагнитных пластин, и обмоток возбуждения, соединённых последовательно. Щётки расположены по одной линии друг против друга. Для охлаждения обмоток используется вентилятор.

Классификация

Различают два вида генераторов постоянного тока:

  • с независимым возбуждением обмоток;
  • с самовозбуждением.

Для самовозбуждения генераторов используют электричество, вырабатываемое самим устройством. По принципу соединения обмоток якоря самовозбуждающиеся альтернаторы с делятся на типы:

  • устройства с параллельным возбуждением;
  • альтернаторы с последовательным возбуждением;
  • устройства смешанного типа (компудные генераторы).

Рассмотрим более подробно особенности каждого типа соединения якорных обмоток.

С параллельным возбуждением

Для обеспечения нормальной работы электроприборов, требуется наличие стабильного напряжения на зажимах генераторов, не зависящее от изменения общей нагрузки. Задача решается путём регулировки параметров возбуждения. В альтернаторах с параллельным возбуждением выводы катушки подключены через регулировочный реостат параллельно якорной обмотке.

Реостаты возбуждения могут замыкать обмотку «на себя». Если этого не сделать, то при разрыве цепи возбуждения, в обмотке резко увеличится ЭДС самоиндукции, которая может пробить изоляцию. В состоянии, соответствующем короткому замыканию, энергия рассеивается в виде тепла, предотвращая разрушение генератора.

Электрические машины с параллельным возбуждением не нуждаются во внешнем источнике питания. Благодаря наличию остаточного магнетизма всегда присутствующего в сердечнике электромагнита происходит самовозбуждение параллельных обмоток. Для увеличения остаточного магнетизма в катушках возбуждения сердечники электромагнитов делают из литой стали.

Процесс самовозбуждения продолжается до момента, пока сила тока не достигнет своей предельной величины, а ЭДС не выйдет на номинальные показатели при оптимальных оборотах вращения якоря.

Достоинство: на генераторы с параллельным возбуждением слабо влияют токи при КЗ.

С независимым возбуждением

В качестве источника питания для обмоток возбуждения часто используют аккумуляторы или другие внешние устройства. В моделях маломощных машин используют постоянные магниты, которые обеспечивают наличие основного магнитного потока.

На валу мощных генераторов расположен генератор-возбудитель, вырабатывающий постоянный ток для возбуждения основных обмоток якоря. Для возбуждения достаточно 1 - 3% номинального тока якоря и не зависит от него. Изменение ЭДС осуществляется регулировочным реостатом.

Преимущество независимого возбуждения состоит в том, что на возбуждающий ток никак не влияет напряжение на зажимах. А это обеспечивает хорошие внешние характеристики альтернатора.

С последовательным возбуждением

Последовательные обмотки вырабатывают ток, равен току генератора. Поскольку на холостом ходе нагрузка равна нулю, то и возбуждение нулевое. Это значит, что характеристику холостого хода невозможно снять, то есть регулировочные характеристики отсутствуют.

В генераторах с последовательным возбуждением практически отсутствует ток, при вращении ротора на холостых оборотах. Для запуска процесса возбуждения необходимо к зажимам генератора подключить внешнюю нагрузку. Такая выраженная зависимость напряжения от нагрузки является недостатком последовательных обмоток. Такие устройства можно использовать только для питания электроприборов с постоянной нагрузкой.

Со смешанным возбуждением

Полезные характеристики сочетают в себе конструкции генераторов со смешанным возбуждением. Их особенности: устройства имеют две катушки - основную, подключённую параллельно обмоткам якоря и вспомогательную, которая подключена последовательно. В цепь параллельной обмотки включён реостат, используемый для регулировки тока возбуждения.

Процесс самовозбуждения альтернатора со смешанным возбуждением аналогичен тому, который имеет генератор с параллельными обмотками (из-за отсутствия начального тока последовательная обмотка в самовозбуждении не участвует). Характеристика холостого хода такая же, как у альтернатора с параллельной обмоткой. Это позволяет регулировать напряжения на зажимах генератора.

Смешанное возбуждение сглаживает пульсацию напряжения при номинальной нагрузке. В этом состоит главное преимущество таких альтернаторов перед прочими типами генераторов. Недостатком является сложность конструкции, что ведёт к удорожанию этих устройств. Не терпят такие генераторы и коротких замыканий.

Технические характеристики генератора постоянного тока

Работу генератора характеризуют зависимости между основными величинами, которые называются его характеристиками. К основным характеристикам можно отнести:

  • зависимости между величинами при работе на холостом ходе;
  • характеристики внешних параметров;
  • регулировочные величины.

Некоторые регулировочные характеристики и зависимости холостого хода мы раскрыли частично в разделе «Классификация». Остановимся кратко на внешних характеристиках, которые соответствуют работе генератора в номинальном режиме. Внешняя характеристика очень важна, так как она показывает зависимость напряжения от нагрузки, и снимается при стабильной скорости оборотов якоря.

Внешняя характеристика генератора постоянного тока с независимым возбуждением выглядит следующим образом: это кривая, зависимости напряжения от нагрузки (см. рис. 5). Как видно на графике падение напряжения наблюдается, но оно не сильно зависит от тока нагрузки (при сохранении скорости оборотов двигателя, вращающего якорь).

Внешняя характеристика ГПТ

Рис. 5. Внешняя характеристика ГПТ

В генераторах с параллельным возбуждением зависимость напряжения от нагрузки сильнее выражена (см. рис. 6). Это связано с падением тока возбуждения в обмотках. Чем выше нагрузочный ток, тем стремительнее будет падать напряжение на зажимах генератора. В частности, при постепенном падении сопротивления до уровня КЗ, напряжение падёт до нуля. Но резкое замыкание в цепи вызывает обратную реакцию генератора и может быть губительным для электрической машины этого типа.

Характеристика ГПТ с параллельным возбуждением

Рис. 6. Характеристика ГПТ с параллельным возбуждением

Увеличение тока нагрузки при последовательном возбуждении ведёт к росту ЭДС. (см. верхнюю кривую на рис. 7). Однако напряжение (нижняя кривая) отстаёт от ЭДС, поскольку часть энергии расходуется на электрические потери от присутствующих вихревых токов.

Внешняя характеристика генератора с последовательным возбуждением

Рис. 7. Внешняя характеристика генератора с последовательным возбуждением

Обратите внимание на то, что при достижении своего максимума напряжение, с увеличением нагрузки, начинает резко падать, хотя кривая ЭДС продолжает стремиться вверх. Такое поведение является недостатком, что ограничивает применение альтернатора этого типа.

В генераторах со смешанным возбуждением предусмотрены встречные включения обеих катушек - последовательной и параллельной. Результирующая намагничивающая сила при согласном включении равна векторной сумме намагничивающих сил этих обмоток, а при встречном - разнице этих сил.

В процессе плавного увеличении нагрузки от момента холостого хода до номинального уровня, напряжение на зажимах будет практически постоянным (кривая 2 на рис. 8). Увеличение напряжения наблюдается в том случае, если количество проводников последовательной обмотки будет превышать количество витков соответствующее номинальному возбуждению якоря (кривая 1).

Изменение напряжения для случая с меньшим числом витков в последовательной обмотке, изображает кривая 3. Встречное включение обмоток иллюстрирует кривая 4.

Внешняя характеристика ГПТ со смешанным возбуждением

Рис. 8. Внешняя характеристика ГПТ со смешанным возбуждением

Генераторы со встречным включением используют тогда, когда необходимо ограничить токи КЗ, например, при подключении сварочных аппаратов.

В нормально возбуждённых устройствах смешанного типа ток возбуждения постоянный и от нагрузки почти не зависит.

Реакция якоря

Когда к генератору подключена внешняя нагрузка, то токи в его обмотке образуют собственное магнитное поле. Возникает магнитное сопротивление полей статора и ротора. Результирующее поле сильнее в тех точках, где якорь набегает на полюсы магнита, и слабее там, где он с них сбегает. Другими словами якорь реагирует на магнитное насыщение стали в сердечниках катушек. Интенсивность реакции якоря зависит от насыщения в магнитопроводах. Результатом такой реакции является искрение щёток на коллекторных пластинах.

Снизить реакцию якоря можно путём применения компенсирующих дополнительных магнитных полюсов или сдвигом щёток с осевой линии геометрической нейтрали.

Среднее значение электродвижущей силы пропорционально магнитному потоку, количеству активных проводников в обмотках и частоте вращения якоря. Увеличивая или уменьшая указанные параметры можно управлять величиной ЭДС, а значит и напряжением. Проще всего, желаемого результата можно достичь путём регулировки частоты вращения якоря.

Мощность

Различают полную и полезную мощность генератора. При постоянной ЭДС полная мощность пропорциональна току: P = EIa. Отдаваемая в цепь полезная мощность P1 = UI.

Важной характеристикой альтернатора является его КПД - отношение полезной мощности к полной. Обозначим данную величину символом ηe. Тогда: ηe=P1/P.

На холостом ходе ηe = 0. максимальное значение КПД - при номинальных нагрузках. Коэффициент полезного действия в мощных генераторах приближается к 90%.

Применение

До недавнего времени использование тяговых генераторов постоянного тока на ж/д транспорте было безальтернативным. Однако уже начался процесс вытеснения этих генераторов синхронными трёхфазными устройствами. Переменный ток, синхронного альтернатора выпрямляют с помощью выпрямительных полупроводниковых установок.

На некоторых российских локомотивах нового поколения уже применяют асинхронные двигатели, работающие на переменном токе.

Похожая ситуация наблюдается с автомобильными генераторами. Альтернаторы постоянного тока заменяют асинхронными генераторами, с последующим выпрямлением.

Пожалуй, только передвижные сварочные аппараты с автономным питанием неизменно остаются в паре с альтернаторами постоянного тока. Не отказались от применения мощных генераторов постоянного тока также некоторые отрасли промышленности.

Отсутствие электричества сегодня не становится проблемой как в быту, так и в промышленности. Широкий ассортимент генераторов тока позволяет решить проблему быстро, с минимальными трудозатратами. Резервные источники питания незаменимы в современной реальности - всему нужна электроэнергия. Гарантии, что подачу электроэнергии не прекратят в самый неподходящий момент - не может дать ни она организация. Поэтому резервная электростанция на базе генератора постоянного или переменного тока - важное, а зачастую незаменимое оборудование, которое обеспечивает непрерывность производства, комфорт в бытовой сфере, безопасность и непрерывность технологических процессов.

Что такое генератор тока

Когда нет электрической энергии, требуется получить её из другого источника. Наши предки, например, использовали силу ветра, течения рек. Впрочем, сегодня подобную энергию применяют, если не жалко времени и сил на возведение плотин и ветряков. Генераторы тока стандартно «работают» на топливе, за счет вращения обмотки в магнитном поле преобразовывая механическую энергию вращения в электричество. Ток возникает в замкнутом контуре, протекает по обмоткам, когда к электростанции подключается потребитель - именно так работает генератор тока.
В зависимости от того, как вращается магнитное поле (при неподвижном или подвижном проводнике) различают два типа этих электрических машин - генераторы постоянного или переменного тока.

В чем разница между постоянным и переменным током

Вспоминаем уроки физики. Электроток - заряженные микрочастицы, которые «бегут» в определенном направлении. У постоянного тока частицы движутся по прямой, в одном направлении от минуса к плюсу. У переменного движение электронов идет по синусоиде с определенной частотой (полярность между проводами меняется несколько раз за заданный промежуток времени).

В чем разница между постоянным и переменным током

Разница между движением заряженных частиц заложена в принцип работы генераторов электрического тока. Для простого обывателя можно сказать так: в розетке - переменный, в батарейке - постоянный. В качестве частного случая, с очень большим упрощением, можно сказать так: всё что с напряжением до 48 Вольт - всё постоянный, всё что от 100 до 500 Вольт - переменный.

Автор статьи и специалисты Mototech прекрасно осведомлены о том, что и постоянный ток может иметь практически любое напряжение (например, 380 Вольт на шине постоянного тока в ИБП), так же как и переменный ток для узких задач.

Несмотря на то, что конечный результат работы электростанций один - потребитель получает электроэнергию, методы преобразования механической энергии в электродвижущую силу и электричество различаются. Элементы (комплектующие) также отличны.

  • Внешней силовой рамы, изготовленной из высокопрочных сплавов. Корпус рассчитан на интенсивную нагрузку, возникающую при передаче магнитного потока от полюса к полюсу. Проще говоря: чугунный кожух не «пробивается» разрядами тока.
  • Магнитных полюсов, закрепленные на корпусе болтами или шпильками. На «плюс» и «минус» монтируется обмотка.
  • Статора. Остов с катушкой возбуждения изготавливают из ферромагнитных материалов, на сердечнике устанавливают магнитные полюса, которые и образуют магнитное поле.
  • Вращающегося ротора (якоря). Задача магнитопровода - снизить вихревые токи и повысить КПД генератора постоянного тока.
  • Коммутационного узла, оснащенного щетками (обычно изготовленными из графита) и коллекторными пластинами из меди.

В чем конструктивная разница между генераторами

Полюсов может быть несколько (число минусов и плюсов всегда идентично). Поэтому сегодня потребитель может купить электростанцию необходимой мощности и обеспечить электричеством как дом, так и промышленный объект.

Особенности конструкции генератора переменного тока

Конструктивной разницы в статоре и роторе между устройствами постоянного и переменного тока нет. Практически идентичны и силовые рамы. Существенное отличие в комплектации коммуникационного узла. Каждый выход механизма помимо щеток оснащен токопроводящими кольцами. «Закольцованный» ток движется по синусоиде и несколько раз в секунду достигает пика мощности. По типу устройства, характеристикам и принципу работы современные генераторы переменного тока делятся на синхронные и асинхронные.

Специфика синхронного устройства

Специфика синхронного устройства: скорость вращения ротора равна скорости вращения магнитного поля в рабочем зазоре.

  • Отсутствие электрической связи с ротором;
  • Вращение якоря под воздействием остаточного механизма статора;
  • Измененная электрическая нагрузка на статоре.

Такие агрегаты могут быть однофазными и трехфазными.

Принцип работы электростанции прямого тока

  • Рамка вращается вокруг оси, расположенная на корпусе обмотка регулярно проходит через «минус» и «плюс» полюсов.
  • Каждый раз при достижении разнополюсных точек, происходит смена направления тока на противоположное.
  • Выходной цепи благодаря полукольцу, расположенному на коллекторном узле, создается постоянный ток.
  • С помощью щеток с положительного или отрицательного полюса снимается потенциал и по схеме передается потребителю.

Такая схема работает в простейшей конструкции, с одним плюсом и минусом, если положительных/отрицательных точек больше, ЭДС и ориентировочное количество электроэнергии рассчитываются по формуле.

Принцип работы электростанции прямого тока

  • Небольшой вес и компактность агрегата;
  • Возможность использовать в экстремальных условиях;
  • Отсутствие потерь, связанных с вихревыми токами.

Минус: на большую мощность при использовании устройств такого типа рассчитывать не стоит.

Принцип работы электростанции переменного тока

Устройства такого типа преобразуют механику в электроэнергию, вращая проволочную катушку в магнитном поле. Ток вырабатывается, когда силовые линии пересекают обмотку. До тех пор, пока магнитное поле соприкасается с проводником, в нем индуцируется электроток.
Идентичный принцип действует и в случае, если рамка вращается относительно магнита, пересекая силовые линии.

В электростанциях с синусоидальной подачей тока отсутствует реактивная мощность. То есть весь запас электроэнергии (с вычетом потерь на проводах) расходуется на нужды потребителя, а не на поддержание работоспособности устройства.

  • Большая выходная мощность при одинаковых габаритах устройств постоянного и переменного тока;
  • Выработка электроэнергии на низких скоростях вращения ротора;
  • Проще конструкция и схема, соответственно, меньше узлов, нуждающихся в техобслуживании и ремонте;
  • Конструкция токосъемного узла отличается большей надежностью;
  • Больше эксплуатационный ресурс и меньше эксплуатационные затраты.

Дополнительное преимущество: агрегаты с трехфазным питанием можно использовать для питания высоковольтных потребителей.

Оба вида генераторов популярны в бытовой и промышленной сфере. Станции постоянного тока нашли применение в сфере транспорта. Так, в трамваях, троллейбусах обычно установлены двигатели, работающие на постоянном токе. Низковольтные устройства незаменимы для питания систем освещения в местах, где нет доступа к централизованной подачи электроэнергии. Например, на борту самолетов. Если большая мощность - не основополагающая характеристика электростанции, то генераторы постоянного тока отлично справятся с питанием оборудования в учебных, медицинских учреждениях, лабораториях. Полноценные дизельные электростанции постоянного тока используются на аэродромах для зарядки и питания бортовых систем летной техники.

Электростанции переменного тока необходимы практически для всего остального. 99% того, что питается от централизованной сети - это устройства переменного тока. Соответственно, аварийное питание этих объектов так же должно осуществляться от соответствующего оборудования.

Мototech специализируется на продаже электростанций различного типа. Поможем выбрать оптимальный вариант электростанции мощностью от 5 до 6000 кВА и конечно же, это будут электростанции переменного тока. Мы обеспечим сопроводительные строительные и электромонтажные работы, грамотную пуско-наладку и обслуживание устройств. С клиентами работают сотрудники с энергетическим образованием, поэтому квалифицированную информацию, ответы на вопросы и правильные расчеты характеристик в соответствии с вашими потребностями гарантируем.

Работа электронного оборудования, бытовых электрических сетей и автомобилей прямо зависит от генераторов. Статья подробно раскроет тему, что такое генераторы постоянного и переменного тока. Будет описан каждый тип этих устройств, разновидности, принцип работы.

Одна из первых силовых машин

Принцип работы

Простейший генератор переменного тока состоит из следующих частей:

  1. 2 постоянных разнополюсных магнита.
  2. Рамки из медной проволоки.
  3. Контактных колец, с которых снимается полученное напряжение.

Принцип работы генератора переменного тока

Работает простой альтернатор по следующему принципу:

  1. Постоянные магниты создают магнитное поле.
  2. При вращении медной рамки, эти поля пересекаются самой рамкой.
  3. При пересечении полей, на рамке образуется электричество.
  4. При отсутствии пересечения, напряжение пропадает.

Генератор переменного тока

Рамка, осуществляя одно полное вращение, дважды пересекает магнитное поле. Таким образом направленность ЭДС меняется на противоположную. Смена направленности ЭДС приводит к возникновению синусоидального или переменного тока.

В таком эксперименте прослеживается не только смена направленности ЭДС, но и полная потеря электрического напряжения. Для того чтобы этот эффект сошел на нет, генератор переменного тока оснащается приводом. Привод используется для постоянного вращения якоря генератора, с целью минимизации потери напряжения и поддержания его на заданном уровне. Генераторы приводятся в действие несколькими способами. Это может быть двигатель внутреннего сгорания, передаточное вращение от энергии воды, пара, сжигания нефти или газа, энергия ветра.

Генераторы переменного тока

Генераторы переменного тока устроены и работают по принципу простейшего экспериментального альтернатора. Эти устройства состоят из следующих элементов:

  1. Ротор. Представляет собой металлический сердечник, надетый на основной вал генератора. Ротор может быть оснащен обмоточным проводом или не иметь его. Все зависит от типа устройства. Ротор подвижная часть устройства. Приводится в движение за счет приводного механизма (двигателя, турбины, лопастей).
  2. Статор. Неподвижная часть, которая так же оснащена медной обмоткой. Обмотка помещена в специально прорезанные пазы, имеет изоляцию между металлическим корпусом и самим проводом.
  3. Контактные кольца с щетками или коллектором. Эти элементы используются для подачи постоянного напряжения к обмоткам для их первоначального возбуждения. Также коллектор используется в качестве выпрямителя. Он предотвращает смену направленности.

Устройство генератора переменного тока

Работает такой генератор по следующему принципу:

  1. Ток возбуждения поступает на обмотку статора, который является постоянным магнитом. Далее происходит образование магнитного поля.
  2. Вращающийся ротор с обмоткой также становится постоянным магнитом. Из-за этого создается ЭДС между статором и ротором.
  3. Во время вращения происходит пересечение магнитного поля, за счет чего образуется переменный ток.
  4. Ток поступает через коммутационный щеточный узел в подключенную цепь.

Генераторы переменного тока имеют множество разновидностей. Они отличаются по:

  1. Классификации. Могут быть синхронными и асинхронными. Синхронные зависимы от частоты вращения и частоты переменного ЭДС. Такие генераторы легко определить визуально. Их подвижный ротор имеет обмотку. Асинхронные не имеют обмотки на роторе. Они не зависят от частоты вращения, более устойчивы к изменению частоты оборотов и не подвержены быстрому нагреву во время коротких замыканий.
  2. По способу возбуждения. Выделяются 4 основных типа: от постороннего источника питания; самовозбуждающиеся; от более мощного генератора, который работает совместно с основным; от постоянного магнита.
  3. По количеству фаз. Различаются одно-, двух- и трехфазные модели. Самыми распространенными являются трехфазные типы устройств.
  4. По способу соединения обмотки статора. Основных схем существует 2 — это треугольник и звезда. Отличаются эти две схемы способом соединения. Когда используется «звезда», то все концы обмоток соединены в одной точке. «Треугольник» — предусматривает последовательное соединение всех концов обмотки.
  5. По конструкции. Генераторы переменного типа могут быть: с неподвижным статором или с неподвижным ротором.
  6. По способу преобразования энергии.

Также генераторы могут отличаться по способу эксплуатации. Они бывают стационарными или переносными.

Преимущества

Преимущество генераторов переменного тока заключается в следующем:

  1. Возможность получения электрического тока при использовании различных приводов. Таким образом есть возможность преобразования практически любого вида энергии в электрический ток.
  2. Выработка тока даже при малых оборотах вала.
  3. Отсутствие ограничителей, регуляторов и реле.
  4. Токосъемное устройство значительно надежнее.
  5. Высокий срок службы.
  6. Низкие затраты на производство.
  7. Подача переменного напряжения как в сложно разветвленные сети, так и к отдельным бытовым потребителям.

Достоинство генераторов переменного тока состоит еще и в том, что на их основе можно легко создать устройство для выработки постоянного тока.

Недостатки таких устройств следующие:

  1. Зависимость от частоты вращения.
  2. Подверженность нагреву обмотки в результате возникновения нагрузки.
  3. Сложный ремонт и замена обмотки.
  4. Потребность в выпрямителе тока.

Генераторы постоянного тока

Устройство генератора постоянного тока ничем не отличается от устройства, которое вырабатывает переменный ток. Первые генераторы постоянного тока отличались только наличием полуколец для отвода электрического тока. Принцип их работы заключался в том, что щеткой снималось напряжение только определенного полюса. Например, одна снимала только «+», а вторая только минус. Таким образом в цепь передавался постоянный ток. Главным недостатком таких устройств является высокая зависимость напряжения от частоты оборотов якоря. При снижении оборотов напряжение падает, а при увеличении стабилизируется на необходимом уровне. Но высокое число оборотов приводит к разбалансировке якоря, быстрой выработке самих щеток и удерживающих якорь подшипников.

Принцип работы генератора постоянного тока

Для получения постоянного тока с малым напряжением используются генераторы с выпрямителем или диодным мостом. Конструктивно этот механизм относится к генераторам асинхронного типа.

Принцип преобразования переменного тока в постоянный на примере автомобильного генератора постоянного тока:

  1. Генератором вырабатывается переменный ток. При этом устройство имеет трехфазную обмотку, соединенную по схеме «звезда».
  2. С каждой фазы ток поступает на один из 6 диодов, из которых состоит мост. За 1 период в преобразовании задействуется 2 диода для каждой фазы.
  3. Смена потенциала тока на каждой фазе заставляет диоды пропускать ток только в определенном направлении.

Таким образом происходит сглаживание синусоиды. Через открытую сторону каждого диода проходит только ток положительного значения. На выходе с диодов снимается только положительное значение или «+». В схеме может присутствовать 6 или 8 диодов. Каждая пара диодов называется плечом. 8 полупроводников используются для схемы типа «звезда». Дополнительная пара подключается к нулевому контакту на статоре. Такие выпрямители более мощные. Они обеспечивают примерно на 15 % больше напряжения во время работы на холостом ходу.

Также существуют схемы, в которых может быть задействовано до 11 диодов. Такие генераторы получают питание регулятора и обмоток за счет дополнительных пар полупроводников.

В таких генераторах имеется электронное реле выпрямителя. Это устройство обеспечивает контроль выработанного напряжения, сглаживает скачки напряжения, предотвращает нагрев обмотки и возникновение нагрузок при коротких замыканиях.

Устройство генератора постоянного тока

  1. Отсутствие зависимости от перепада оборотов вала.
  2. Выработка только постоянного напряжения.
  3. Возможность регулировки выработанного напряжения.

Недостаток таких механизмов только в разбалансировке вала и стирании щеток при больших, неконтролируемых оборотах.

Различия

Далее необходимо будет разобраться, в чем основные отличия генераторов переменного и постоянного тока. Они заключаются в следующем:

  1. Генератор постоянного тока оснащается полукольцом для изменения направленности тока.
  2. Для получения постоянного напряжения может использоваться диодный мост.
  3. Необходимость использования реле регулятора.
  4. Также есть отличие при зависимости от частоты оборотов приводного механизма.

Например, автомобильный генератор не может заряжать аккумулятор при работе на холостом ходу. В этом режиме двигатель машины вращается с частотой 800 оборотов/мин. Таких оборотов не хватает, чтобы выработать зарядный ток достаточной мощности.

  1. Генератор постоянного тока оснащается полукольцом для изменения направленности тока.
  2. Для получения постоянного напряжения может использоваться диодный мост.
  3. Необходимость использования реле регулятора.
  4. Также есть отличие при зависимости от частоты оборотов приводного механизма.Например, автомобильный генератор не может заряжать аккумулятор при работе на холостом ходу. В этом режиме двигатель машины вращается с частотой 800 оборотов/мин. Таких оборотов не хватает, чтобы выработать зарядный ток достаточной мощности.
  5. Использование соединения типа «треугольник» не используется в генераторах постоянного напряжения. Причина кроется в том, что происходит скачкообразное изменение фазных ЭДС во времени. В электромашинах переменного типа такие изменения более сглажены.
  6. Устройства, вырабатывающие электричество, не имеют особой конструктивной разницы. Но генераторы постоянного типа требуют большего контроля со стороны человека. Электромашины переменного типа более надежны, требуют меньшего вмешательства, так как часто не оснащаются сложным электронным оборудованием для регулировки и контроля напряжения.
  7. Переменное напряжение вырабатывается при меньших затратах на медную обмотку, при этом габаритные размеры таких генераторов могут быть значительно меньше.
  8. Для выработки зарядного тока, генератор должен работать через передаточный механизм. Только так можно добиться мгновенной выработки нужного значения при малых оборотах.

Использование электрических машин, вырабатывающих постоянный ток не является целесообразным. Это связано с тем, что они менее надежные. Гораздо менее затратными являются устройства для выработки переменного напряжения, которые оснащены выпрямителями. Такой механизм может работать практически на любых оборотах с сохранением нужного напряжения и имеет защиту от перегрузок. Габариты такого устройства будут намного меньше, при том что выходная мощность устройств будет одинаковой.

Переменные и постоянные генераторы имеют схожую конструкцию. Отличаются они только необходимостью преобразования тока из одного значения в другое. Генераторы постоянного тока при этом имеют более сложную схему, и во время их работы требуется контроль со стороны человека.

Читайте также: